scholarly journals Cotransplantation of Cord Blood Hematopoietic Stem Cells and Culture-Expanded and GM-CSF-/SCF-Transfected Mesenchymal Stem Cells in SCID Mice

2007 ◽  
Vol 22 (2) ◽  
pp. 242 ◽  
Author(s):  
Jin-Yeong Han ◽  
Rhee Young Goh ◽  
Su Yeong Seo ◽  
Tae Ho Hwang ◽  
Hyuk Chan Kwon ◽  
...  
Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 4950-4950
Author(s):  
Jin-Yeong Han ◽  
Rhee-Young Koh ◽  
Su-Yeong Seo ◽  
Joo-In Park ◽  
Hyuk-Chan Kwon ◽  
...  

Abstract Mesenchymal stem cells (MSC) are multipotent and believed to facilitate the engraftment of hematopoietic stem cells (HSC) when transplanted simultaneously in animal studies and recently even in human trials. In this study, we transfected culture-expanded MSC with GM-CSF, G-CSF, and CSF cytokine genes and then co-transplanted with HSC to further promote HSC engraftment. Mononuclear cells were harvested from the various sources and seeded in long-term culture for ex vivo MSC expansion. The phenotype and purity of MSC were assessed by flow cytometry. We transferred the above three cytokine genes into ex vivo expanded MSC, confirmed transfection by fluorescent microscope of GFP, and thereafter did co-transplantation with HSC. A total of 1x107 HSC plus MSC/uL were introduced to tail vein of SCID mice. After 3–7 weeks later, with venous blood from the eyeballs, homing and engraftment of human cells were determined by flow cytometry and fluorescence in situ hybridization (FISH) studies. The total nucleated cell count and the engraftment of CD45+/CD34+ cells and XX/XY-positive human cells significantly increased in co-transplanted mice and even higher with the cytokine gene-transfected MSC in the order of GM-CSF, SCF, and G-CSF transfections (P<0.05). These results suggest that MSC transfected with hematopoietic growth factor genes are capable of enhancing the hematopoietic engraftment. Now we are planning to deliver genes involved in homing and cell adhesions, e.g., CXCR4, VLA, or TPO into ex vivo expanded MSC and do co-transplantation with HSC to further increase the efficiency of stem cell transplantation.


2019 ◽  
Vol 120 (7) ◽  
pp. 12018-12026 ◽  
Author(s):  
Maryam Darvish ◽  
Zahra Payandeh ◽  
Fatemeh Soleimanifar ◽  
Behnaz Taheri ◽  
Masoud Soleimani ◽  
...  

Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 3650-3650
Author(s):  
Kent W. Christopherson ◽  
Tiki Bakhshi ◽  
Shamanique Bodie ◽  
Shannon Kidd ◽  
Ryan Zabriskie ◽  
...  

Abstract Hematopoietic Stem Cells (HSC) are routinely obtained from bone marrow, mobilized peripheral blood, and umbilical Cord Blood. Traditionally, adult bone marrow has been utilized as a source of Mesenchymal Stem Cells (MSC). Bone marrow derived MSC (BM-MSC) have previously been shown to maintain the growth of HSC obtained from cord blood and have been utilized for cord blood expansion purposes. However, the use of a mismatched BM-MSC feeder stromal layer to support the long term culture of cord blood HSC is not ideal for transplant purposes. The isolation of MSC from a novel source, the Wharton’s Jelly of Umbilical Cord segments, was recently reported (Romanov Y, et al. Stem Cells.2003; 21: 105–110) (Lee O, et al. Blood.2004; 103: 1669–1675). We therefore hypothesized that Umbilical Cord derived MSC (UC-MSC) have the ability to support the long term growth of cord blood derived HSC similar to that previously reported for BM-MSC. To test this hypothesis, MSC were isolated from the Wharton’s Jelly of Umbilical Cord segments and defined morphologically and by cell surface markers. UC-MSC were then tested for their ability to support the growth of pooled CD34+ cord blood cells in long term culture - initiating cell (LTC-IC) assays as compared to BM-MSC. We observed that like BM-MSC, CB-MSC express a defined set of cell surface markers. By flow cytometry we determined that that both UC-MSC and BM-MSC are positive for CD29, CD44, CD73, CD90, CD105, CD166, HLA-A and negative for CD45, CD34, CD38, CD117, HLA-DR expression. Utilizing Mitomycin C treated (200 μM, 15 min.) UC-MSC from multiple donors as a feeder layer we observed that UC-MSC have the ability to support the maintenance of long term hematopoiesis during the LTC-IC assay. Specifically, UC-MSC isolated from separate umbilical cord donors support the growth of 69.6±11.9 (1A), 31.7±3.9 (2B), 67.0±13.5 (3A), and 38.5±13.7 (3B) colony forming cells (CFC) per 1×104 CD34+ cord blood cells as compared to 64.0±4.2 CFC per 1×104 CD34+ cord blood cells supported by BM-MSC (Mean±SEM, N=4 separate segments from three different donors). Thus, Umbilical Cord derived Mesenchymal Stem Cells, a recently described novel source of MSC, have the ability to support long term maintenance of Hematopoietic Stem Cells, as defined by the LTC-IC assay. These results may have potential therapeutic application with respect to ex vivo stem cell expansion of Cord Blood Hematopoietic Stem Cells utilizing a Mesenchymal Stem Cell stromal layer. In addition, these data suggest the possibility of co-transplantation of matched Mesenchymal and Hematopoietic Stem Cells from the same umbilical cord and cord blood donor respectively. Lastly, these results describe a novel model system for the future study of the interaction between Cord Blood Hematopoietic Stem Cells and the appropriate supportive microenvironment represented by the Umbilical Cord - Mesenchymal Stem Cells.


Hematology ◽  
2007 ◽  
Vol 12 (4) ◽  
pp. 325-330 ◽  
Author(s):  
Chen Lin ◽  
Shaohua Chen ◽  
Lijian Yang ◽  
Yubo Tan ◽  
Xue Bai ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document