scholarly journals Regulation of human neutrophil aggregation: comparable latent times, activator sensitivities, and exponential decay in aggregability for FMLP, platelet-activating factor, and leukotriene B4

Blood ◽  
1993 ◽  
Vol 82 (11) ◽  
pp. 3460-3468 ◽  
Author(s):  
YP Rochon ◽  
MM Frojmovic

Abstract We have recently described a flow cytometry technique, whose sensitivity allows direct measurements of latent times before the onset of aggregation, and of rates, maximal extents, and reversibility of aggregation (J Leuk Biol 50:434, 1991). We report here that activators which stimulate sustained cellular signaling associated with increases in intracellular calcium (ionomycin) or protein kinase C activation (phorbol myristate acetate, PMA) cause complete (> or = 98%) and irreversible neutrophil aggregation, with latent times for the onset of aggregation inversely proportional to the activator concentration. In contrast, the receptor-specific activators leukotriene B4 (LTB4), formyl peptide FMLP, and platelet-activating factor (PAF) gave only partial and reversible aggregatory responses, limited by the following similar properties: latent times of 4.5 seconds +/- 1.5 seconds, independent of activator concentration; similar concentrations for onset of aggregation (approximately 1 nmol/L) that increased over a similar broad range of activator concentration, with one-half maximal rates of aggregation at 10 nmol/L to 30 nmol/L, corresponding to reported dissociation constant values; comparable limited recruitment and spontaneous reversibility of aggregation; absence of interactivator synergism; and similar exponential decays in activated cell stickiness (refractoriness), with t1/2 = 15 to 30 seconds. Variable cross- desensitization was seen between LTB4 and FMLP depending on donor and activator concentrations. In vivo, these properties are expected to provide localization of the aggregatory response, minimizing the otherwise detrimental effects of circulating activated neutrophils.

Blood ◽  
1993 ◽  
Vol 82 (11) ◽  
pp. 3460-3468
Author(s):  
YP Rochon ◽  
MM Frojmovic

We have recently described a flow cytometry technique, whose sensitivity allows direct measurements of latent times before the onset of aggregation, and of rates, maximal extents, and reversibility of aggregation (J Leuk Biol 50:434, 1991). We report here that activators which stimulate sustained cellular signaling associated with increases in intracellular calcium (ionomycin) or protein kinase C activation (phorbol myristate acetate, PMA) cause complete (> or = 98%) and irreversible neutrophil aggregation, with latent times for the onset of aggregation inversely proportional to the activator concentration. In contrast, the receptor-specific activators leukotriene B4 (LTB4), formyl peptide FMLP, and platelet-activating factor (PAF) gave only partial and reversible aggregatory responses, limited by the following similar properties: latent times of 4.5 seconds +/- 1.5 seconds, independent of activator concentration; similar concentrations for onset of aggregation (approximately 1 nmol/L) that increased over a similar broad range of activator concentration, with one-half maximal rates of aggregation at 10 nmol/L to 30 nmol/L, corresponding to reported dissociation constant values; comparable limited recruitment and spontaneous reversibility of aggregation; absence of interactivator synergism; and similar exponential decays in activated cell stickiness (refractoriness), with t1/2 = 15 to 30 seconds. Variable cross- desensitization was seen between LTB4 and FMLP depending on donor and activator concentrations. In vivo, these properties are expected to provide localization of the aggregatory response, minimizing the otherwise detrimental effects of circulating activated neutrophils.


1991 ◽  
Vol 261 (6) ◽  
pp. H1872-H1879 ◽  
Author(s):  
P. Kubes ◽  
M. B. Grisham ◽  
J. A. Barrowman ◽  
T. Gaginella ◽  
D. N. Granger

The overall objective of this study was to determine whether leukocyte adherence and/or emigration is a prerequisite for the increased vascular protein leakage associated with acute inflammation. An in vivo preparation was used to monitor intestinal vascular protein leakage as well as polymorphonuclear leukocyte (PMN) adhesion and emigration in feline mesenteric microvessels exposed to platelet-activating factor (PAF) and leukotriene B4 (LTB4). Local intra-arterial infusion of PAF (4 ng/min) produced a fourfold increase in vascular protein leakage. A 50-fold higher concentration of LTB4 had no effect on vascular protein efflux. LTB4, however, did potentiate the PAF-induced vascular protein leakage. Both inflammatory mediators caused leukocytes to adhere to endothelial cells in postcapillary venules; however, leukocyte emigration was observed only in the presence of PAF. PAF-induced leukocyte adhesion and emigration and the increased vascular protein leakage were inhibited by a monoclonal antibody (MoAb IB4) directed against the common beta-subunit of the adhesive glycoprotein complex CD11/CD18. MoAb IB4 also prevented LTB4-induced leukocyte adhesion. Both PAF and LTB4 caused degranulation of cat PMNs in vitro, yet superoxide production was stimulated by PAF only. The data derived from these in vivo and in vitro studies indicate that leukocyte adhesion per se does not necessarily lead to increased vascular protein leakage and leukocyte emigration. Adhesion-dependent PMN functions such as emigration and superoxide production may play an important role in producing the alterations in vascular integrity observed in inflamed microvessels.


Blood ◽  
1997 ◽  
Vol 89 (12) ◽  
pp. 4566-4573 ◽  
Author(s):  
Mauro M. Teixeira ◽  
Mark A. Giembycz ◽  
Mark A. Lindsay ◽  
Paul G. Hellewell

Abstract The present study was performed to investigate the early signalling events responsible for eosinophil activation in response to platelet-activating factor (PAF ), C5a, and leukotriene B4 (LTB4 ). We evaluated the effect of pertussis toxin (PTX) on eosinophil aggregation in vitro and cutaneous eosinophil recruitment in vivo. Further studies using the protein kinase inhibitors Ro 31-8220 and staurosporine were performed in vitro to assess in more detail the early signalling events induced by these three mediators. Our results show that C5a and LTB4 signal predominantly or exclusively through a PTX-sensitive G protein that is negatively modulated by protein kinase C, possibly at the level of phospholipase C-β. In contrast, PAF activates eosinophils independent of Gi by a mechanism that is abolished by Ro 31-8220, a selective protein kinase C inhibitor. In addition, these results show for the first time that a receptor-operated event on the eosinophil is essential for chemoattractant-induced eosinophil recruitment in vivo.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Ronald Anderson ◽  
Annette J. Theron ◽  
Helen C. Steel ◽  
Chrisna Durandt ◽  
Gregory R. Tintinger ◽  
...  

The clinical relevance of the anti-inflammatory properties of beta-2 agonists remains contentious possibly due to differences in their molecular structures and agonist activities. The current study has compared the effects of 3 different categories ofβ2-agonists, namely, salbutamol (short-acting), formoterol (long-acting) and indacaterol (ultra-long-acting), at concentrations of 1–1000 nM, with human blood neutrophilsin vitro. Neutrophils were activated with either N-formyl-L-methionyl-L-leucyl-L-phenylalanine (fMLP, 1 µM) or platelet-activating factor (PAF, 200 nM) in the absence and presence of theβ2-agonists followed by measurement of the generation of reactive oxygen species and leukotriene B4, release of elastase, and expression of theβ2-integrin, CR3, using a combination of chemiluminescence, ELISA, colorimetric, and flow cytometric procedures respectively. These were correlated with alterations in the concentrations of intracellular cyclic-AMP and cytosolic Ca2+. At the concentrations tested, formoterol and indacaterol caused equivalent, significant (P<0.05at 1–10 nM) dose-related inhibition of all of the pro-inflammatory activities tested, while salbutamol was much less effective (P<0.05at 100 nM and higher). Suppression of neutrophil reactivity was accompanied by elevations in intracellular cAMP and accelerated clearance of Ca2+from the cytosol of activated neutrophils. These findings demonstrate thatβ2-agonists vary with respect to their suppressive effects on activated neutrophils.


1996 ◽  
Vol 270 (6) ◽  
pp. H2094-H2099 ◽  
Author(s):  
D. V. DeFily ◽  
L. Kuo ◽  
W. M. Chilian

Platelet-activating factor (PAF) has been reported to play a role in neutrophil activation, microvascular permeability, and endothelial dysfunction in a variety of vascular preparations. Although a majority of the effects of PAF are thought to be mediated by the activation of neutrophils, it is unclear the extent to which the deleterious effects of PAF extend to coronary resistance vessels. Therefore, the purpose of this study was to determine whether PAF causes coronary arteriolar endothelial dysfunction in vivo and whether this dysfunction is independent of activated neutrophils. To test these hypotheses, we measured changes in coronary arteriolar diameter to endothelium-dependent and -independent dilators in vivo by measuring coronary microvascular diameters in a beating canine heart using intravital videomicroscopy following intracoronary infusion of PAF (20 ng.kg-1.min-1). Changes in coronary arteriolar diameter following incubation with PAF were also measured in isolated coronary arterioles. In vivo, incubation with PAF resulted in a significant attenuation of endothelium-dependent dilation to intracoronary acetylcholine (0.1 microgram.kg-1.min-1, 39 +/- 7 vs. 20 +/- 3% dilation) and serotonin (1 microgram.kg-1.min-1, 29 +/- 6 vs. 2 +/- 2% dilation). Papaverine-induced relaxation, however, was unchanged. Likewise, in vitro relaxation to serotonin (10 nM) was significantly reduced (38 +/- 4 vs. 3 +/- 5%) following treatment with PAF, whereas nitroprusside (10 nM)-induced relaxation was unchanged. Because PAF impaired endothelium-dependent arteriolar dilation both in vivo and in vitro, we conclude that the presence of activated neutrophils is not required for PAF-induced coronary microvascular dysfunction.


Blood ◽  
2007 ◽  
Vol 110 (6) ◽  
pp. 1848-1856 ◽  
Author(s):  
Abigail Woodfin ◽  
Christoph Andreas Reichel ◽  
Andrej Khandoga ◽  
Monica Corada ◽  
Mathieu-Benoit Voisin ◽  
...  

Abstract Junctional adhesion molecule-A (JAM-A) is a transmembrane protein expressed at tight junctions of endothelial and epithelial cells and on the surface of platelets and leukocytes. The role of JAM-A in leukocyte transmigration in vivo was directly investigated by intravital microscopy using both a JAM-A–neutralizing monoclonal antibody (mAb) (BV-11) and JAM-A–deficient (knockout [KO]) mice. Leukocyte transmigration (but not adhesion) through mouse cremasteric venules as stimulated by interleukin 1β (IL-1β) or ischemia/reperfusion (I/R) injury was significantly reduced in wild-type mice treated with BV-11 and in JAM-A KO animals. In contrast, JAM-A blockade/genetic deletion had no effect on responses elicited by leukotriene B4 (LTB4) or platelet-activating factor (PAF). Furthermore, using a leukocyte transfer method and mice deficient in endothelial-cell JAM-A, evidence was obtained for the involvement of endothelial-cell JAM-A in leukocyte transmigration mediated by IL-1β. Investigation of the functional relationship between JAM-A and PECAM-1 (CD31) determined that dual blockade/deletion of these proteins does not lead to an inhibitory effect greater than that seen with blockade/deletion of either molecule alone. The latter appeared to be due to the fact that JAM-A and PECAM-1 can act sequentially to mediate leukocyte migration through venular walls in vivo.


Blood ◽  
1998 ◽  
Vol 92 (12) ◽  
pp. 4819-4827 ◽  
Author(s):  
G. Ed Rainger ◽  
Andrew F. Rowley ◽  
Gerard B. Nash

Neutrophils must adhere to the vessel wall, migrate, and degranulate in an ordered manner to perform their protective function. Disruption of these processes may be pathogenic. Current knowledge of the degranulation process is derived almost exclusively from studies on neutrophils in suspension, in which priming with the nonphysiological agent cytochalasin B is necessary to obtain elastase release in response to activating agents. To avoid this, we have adopted a different approach. Using a novel flow-based adhesion system, we have been able to quantify the release of elastase from the primary granules of activated neutrophils adherent to immobilized platelets or purified receptors without priming. Comparing stimuli, formyl tripeptide (fMLP), interleukin-8 (IL-8), activated complement fragment C5a, and platelet-activating factor (PAF) all induced rapid conversion to CD11b/CD18 (MAC-1) -mediated stationary adhesion when perfused over neutrophils already rolling on platelet monolayers or purified P-selectin. However, fMLP, C5a, and IL-8, but not PAF, induced release of elastase from the adherent cells in minutes. Neutrophils stimulated in suspension showed little degranulation. Treatment of neutrophils with an inhibitor of 5-lipoxygenase–activating protein (MK886) and thus synthesis of leukotrienes (LTs) or with an antagonist of the LTB4 receptor (LY223982) blocked the release of elastase. This indicated that endogenous synthesis of 5-lipoxygenase products such as LTs and autocrine activation of neutrophils was required for fMLP-driven elastase release. We hypothesize that the differential ability of PAF and fMLP to induce elastase release from surface-adherent neutrophils could arise from differential ability to generate leukotrienes, such as LTB4, and would be an appropriate mechanism for the control of elastase release during inflammation in vivo, where it is important that cytotoxic agents are not released until activated neutrophils have migrated into the extravascular tissues.


Blood ◽  
1998 ◽  
Vol 92 (12) ◽  
pp. 4819-4827 ◽  
Author(s):  
G. Ed Rainger ◽  
Andrew F. Rowley ◽  
Gerard B. Nash

Abstract Neutrophils must adhere to the vessel wall, migrate, and degranulate in an ordered manner to perform their protective function. Disruption of these processes may be pathogenic. Current knowledge of the degranulation process is derived almost exclusively from studies on neutrophils in suspension, in which priming with the nonphysiological agent cytochalasin B is necessary to obtain elastase release in response to activating agents. To avoid this, we have adopted a different approach. Using a novel flow-based adhesion system, we have been able to quantify the release of elastase from the primary granules of activated neutrophils adherent to immobilized platelets or purified receptors without priming. Comparing stimuli, formyl tripeptide (fMLP), interleukin-8 (IL-8), activated complement fragment C5a, and platelet-activating factor (PAF) all induced rapid conversion to CD11b/CD18 (MAC-1) -mediated stationary adhesion when perfused over neutrophils already rolling on platelet monolayers or purified P-selectin. However, fMLP, C5a, and IL-8, but not PAF, induced release of elastase from the adherent cells in minutes. Neutrophils stimulated in suspension showed little degranulation. Treatment of neutrophils with an inhibitor of 5-lipoxygenase–activating protein (MK886) and thus synthesis of leukotrienes (LTs) or with an antagonist of the LTB4 receptor (LY223982) blocked the release of elastase. This indicated that endogenous synthesis of 5-lipoxygenase products such as LTs and autocrine activation of neutrophils was required for fMLP-driven elastase release. We hypothesize that the differential ability of PAF and fMLP to induce elastase release from surface-adherent neutrophils could arise from differential ability to generate leukotrienes, such as LTB4, and would be an appropriate mechanism for the control of elastase release during inflammation in vivo, where it is important that cytotoxic agents are not released until activated neutrophils have migrated into the extravascular tissues.


1994 ◽  
Vol 267 (4) ◽  
pp. H1573-H1577 ◽  
Author(s):  
K. Bienvenu ◽  
N. Harris ◽  
D. N. Granger

Intravital videomicroscopy was used to monitor the migration of leukocytes in rat mesenteric interstitium following exposure of the mesentery to either N-formylmethionyl-leucyl-phenylalanine (FMLP), leukotriene B4 (LTB4), platelet-activating factor (PAF), or ischemia-reperfusion (I-R). All inflammatory stimuli resulted in interstitial migration rates that were higher than those measured in unstimulated extravasated leukocytes. The median migration rate of cells stimulated with FMLP was significantly higher than those observed during superfusion with either LTB4 or PAF or following exposure to I-R. The enhanced leukocyte migration rates elicited by I-R were not attenuated by treatment with PAF- and LTB4-receptor antagonists, suggesting that these lipid mediators are not the inflammatory mediators responsible for I-R-induced leukocyte migration. Additional experiments revealed that the rate of leukocyte migration associated with FMLP stimulation was not significantly altered by either inhibitors of neutrophilic elastase and cathepsin G, a monoclonal antibody directed against the leukocyte adhesion glycoprotein CD11/CD18, or by altering interstitial hydration. This in vivo model provides a useful new approach for defining the factors that modulate leukocyte migration within the extravascular compartment.


2007 ◽  
Vol 14 (6) ◽  
pp. 678-684
Author(s):  
Eiji Ohara ◽  
Yoshitaka Kumon ◽  
Toshihiro Kobayashi ◽  
Hiroaki Takeuchi ◽  
Tetsuro Sugiura

ABSTRACT N-Formyl peptide receptor-like 1 (fPRL1) is a member of the chemoattractant subfamily of G protein-coupled receptors and plays a key role in inflammation via chemotaxis and the regulation of mediator release from leukocytes. Activated fPRL1 has recently been shown to induce a complicated pattern of cellular signaling in vitro, but the details of the regulation and alteration of leukocyte cellular fPRL1 during inflammation in vivo remain unclear. To clarify the alteration of neutrophil fPRL1 during inflammation in vivo, the immunohistochemical staining of neutrophil fPRL1 in samples from patients with purulent dermatitis was performed. The in vitro morphological alteration of neutrophil fPRL1 on cellular membranes by stimulation with N-formylmethionyl-leucyl-phenylalanine (fMLP) was also examined. Both the cytoplasm and the cellular membranes of blood neutrophils stained strongly for fPRL1. On the other hand, the cellular membranes of neutrophils in dermatitis tissue stained strongly for fPRL1 but the cytoplasm stained weakly. The enhancement of neutrophil fPRL1 on cellular membranes by stimulation with fMLP indicates the exocytosis of neutrophil fPRL1-containing granules. In conclusion, we for the first time confirmed the alteration of neutrophil fPRL1 in clinical cases of purulent dermatitis. Cytoplasm that was weakly stained and cellular membranes that were well stained for fPRL1 were considered to be distinctive features of activated neutrophils in purulent dermatitis tissue.


Sign in / Sign up

Export Citation Format

Share Document