leukocyte migration
Recently Published Documents


TOTAL DOCUMENTS

653
(FIVE YEARS 37)

H-INDEX

55
(FIVE YEARS 4)

2022 ◽  
Vol 82 ◽  
Author(s):  
A. G. M. Pacheco ◽  
E. J. Pacheco ◽  
L. A. R. O. Macedo ◽  
J. C. Silva ◽  
S. R. G. Lima-Saraiva ◽  
...  

Abstract Hymenaea martiana is a species popularly known in Northeastern Brazil as “jatobá” and used in folk medicine to treat pain and inflammation. The aim of this work was to evaluate the antinociceptive and anti-inflammatory activity of H. martiana. In the present study, we carried out an investigation about the effects of the crude ethanolic extract (Hm-EtOH) and the ethyl acetate fraction (Hm-AcOEt) in models of nociception and inflammation in mice. Chemical (acetic acid-induced writhing and formalin) and thermal stimuli (hot plate) were used for the evaluation of antinociceptive activity, while for the anti-inflammatory profile paw edema induced by carrageenan was used, along with leukocyte migration to the peritoneal cavity. The presence of the flavonoid astilbin in the samples was characterized through HPLC-DAD-MS analysis. Hm-EtOH and Hm-AcOEt (100, 200 and 400 mg.kg-1, i.p.) significantly reduced the number of abdominal contortions and decreased the paw licking time in the formalin test. In the hot plate, the extract increased the latency time of animals. Hm-EtOH and Hm-AcOEt inhibited significantly the increase in the edema after the administration of carrageenan. Hm-EtOH and Hm-AcOEt inhibited leukocyte migration in the peritonitis test. HPLC-DAD-MS analysis of Hm-EtOH and Hm-AcOEt revealed the presence of the flavonoid astilbin in the samples. According to the results of this study, both Hm-EtOH and Hm-AcOEt have antinociceptive and anti-inflammatory activities, which could be related with the presence of flavonoid in the extracts. The results reinforce the popular use of this plant.


2021 ◽  
Vol 12 ◽  
Author(s):  
Eoin N. Blythe ◽  
Lynne C. Weaver ◽  
Arthur Brown ◽  
Gregory A. Dekaban

CD11d/CD18 is the most recently discovered and least understood β2 integrin. Known CD11d adhesive mechanisms contribute to both extravasation and mesenchymal migration – two key aspects for localizing peripheral leukocytes to sites of inflammation. Differential expression of CD11d induces differences in monocyte/macrophage mesenchymal migration including impacts on macrophage sub-set migration. The participation of CD11d/CD18 in leukocyte localization during atherosclerosis and following neurotrauma has sparked interest in the development of CD11d-targeted therapeutic agents. Whereas the adhesive properties of CD11d have undergone investigation, the signalling pathways induced by ligand binding remain largely undefined. Underlining each adhesive and signalling function, CD11d is under unique transcriptional control and expressed on a sub-set of predominately tissue-differentiated innate leukocytes. The following review is the first to capture the nearly three decades of CD11d research and discusses the emerging role of CD11d in leukocyte migration and retention during the progression of a staged immune response.


2021 ◽  
Author(s):  
Victor Collado‐Diaz ◽  
Jessica D. Medina‐Sanchez ◽  
Anastasia‐Olga Gkountidi ◽  
Cornelia Halin
Keyword(s):  

2021 ◽  
Author(s):  
Tania Gajardo ◽  
Marie Lo ◽  
Mathilde Bernard ◽  
Claire Leveau ◽  
Marie-Therese El-Daher ◽  
...  

The actin cytoskeleton has a crucial role in the maintenance of the immune homeostasis by controlling various cell processes, including cell migration. Mutations in the TTC7A gene have been described as the cause of a primary immunodeficiency associated to different degrees of gut involvement and alterations in the actin cytoskeleton dynamics. Although several cellular functions have been associated with TTC7A, the role of the protein in the maintenance of the immune homeostasis is still poorly understood. Here we leverage microfabricated devices to investigate the impact of TTC7A deficiency in leukocytes migration at the single cell level. We show that TTC7A-deficient leukocytes exhibit an altered cell migration and reduced capacity to deform through narrow gaps. Mechanistically, TTC7A-deficient phenotype resulted from impaired phosphoinositides signaling, leading to the downregulation of the PI3K/AKT/RHOA regulatory axis and imbalanced actin cytoskeleton dynamic. This resulted in impaired cell motility, accumulation of DNA damage and increased cell death during chemotaxis in dense 3D gels. Our results highlight a novel role of TTC7A as a critical regulator of leukocyte migration. Impairment of this cellular function is likely to contribute to pathophysiology underlying progressive immunodeficiency in patients.


BMC Cancer ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Yi Zhang ◽  
Xuewen Yin ◽  
Qi Wang ◽  
Xuming Song ◽  
Wenjie Xia ◽  
...  

Abstract Background This study aimed to develop a reliable immune signature based on B-cell proportion to predict the prognosis and benefit of immunotherapy in LUAD. Methods The proportion of immune cells in the TCGA-LUAD dataset was estimated using MCP-counter. The Least Absolute Shrinkage and Selector Operation was used to identify a prognostic signature and validated in an independent cohort. We used quantitative reverse transcription-polymerase chain reaction (qRT-PCR) data and formalin-fixed paraffin-embedded (FFPE) specimens immunohistochemistry to illustrate the correlation between prognostic signature and leukocyte migration. Results We found that the relative abundance of B lineage positively correlated with overall survival. Then, we identified a 13-gene risk-score prognostic signature based on B lineage abundance in the testing cohort and validated it in a cohort from the GEO dataset. This model remained strongly predictive of prognoses across clinical subgroups. Further analysis revealed that patients with a low-risk score were characterized by B-cell activation and leukocyte migration, which was also confirmed in FFPE specimens by qRT-PCR and immunohistochemistry. Finally, this immune signature was an independent prognostic factor in the composite nomogram of clinical characteristics. Conclusions In conclusion, the 13-gene immune signature based on B-cell proportion may serve as a powerful prognostic tool in LUAD.


2021 ◽  
Author(s):  
Zhang Yi ◽  
Yin Xuewen ◽  
Wang Qi ◽  
Song Xuming ◽  
Xia Wenjie ◽  
...  

Abstract Background: This study aimed to develop a reliable immune signature based on B-cell proportion to predict the prognosis and benefit of immunotherapy in LUAD.Methods: The proportion of immune cells in the TCGA-LUAD dataset was estimated using MCP-counter. The Least Absolute Shrinkage and Selector Operation was used to identify a prognostic signature and validated in an independent cohort. We used quantitative reverse transcription-polymerase chain reaction (qRT-PCR) data and formalin-fixed paraffin-embedded (FFPE) specimens immunohistochemistry to illustrate the correlation between prognostic signature and leukocyte migration. Results: We found that the relative abundance of B lineage positively correlated with overall survival. Then, we identified a 13-gene risk-score prognostic signature based on B lineage abundance in the testing cohort and validated it in a cohort from the GEO dataset. This model remained strongly predictive of prognoses across clinical subgroups. Further analysis revealed that patients with a low-risk score were characterized by B-cell activation and leukocyte migration, which was also confirmed in FFPE specimens by qRT-PCR and immunohistochemistry. Finally, this immune signature was an independent prognostic factor in the composite nomogram of clinical characteristics.Conclusions: In conclusion, the 13-gene immune signature based on B-cell proportion may serve as a powerful prognostic tool in LUAD.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Jun Wang ◽  
Mingzhi Gong ◽  
Zhenggang Xiong ◽  
Yangyang Zhao ◽  
Deguo Xing

Abstract Background This study hoped to explore the potential biomarkers and associated metabolites during osteosarcoma (OS) progression based on bioinformatics integrated analysis. Methods Gene expression profiles of GSE28424, including 19 human OS cell lines (OS group) and 4 human normal long bone tissue samples (control group), were downloaded. The differentially expressed genes (DEGs) in OS vs. control were investigated. The enrichment investigation was performed based on DEGs, followed by protein–protein interaction network analysis. Then, the feature genes associated with OS were explored, followed by survival analysis to reveal prognostic genes. The qRT-PCR assay was performed to test the expression of these genes. Finally, the OS-associated metabolites and disease-metabolic network were further investigated. Results Totally, 357 DEGs were revealed between the OS vs. control groups. These DEGs, such as CXCL12, were mainly involved in functions like leukocyte migration. Then, totally, 38 feature genes were explored, of which 8 genes showed significant associations with the survival of patients. High expression of CXCL12, CEBPA, SPARCL1, CAT, TUBA1A, and ALDH1A1 was associated with longer survival time, while high expression of CFLAR and STC2 was associated with poor survival. Finally, a disease-metabolic network was constructed with 25 nodes including two disease-associated metabolites cyclophosphamide and bisphenol A (BPA). BPA showed interactions with multiple prognosis-related genes, such as CXCL12 and STC2. Conclusion We identified 8 prognosis-related genes in OS. CXCL12 might participate in OS progression via leukocyte migration function. BPA might be an important metabolite interacting with multiple prognosis-related genes.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Takeshi Nakatani ◽  
Kohei Tsujimoto ◽  
JeongHoon Park ◽  
Tatsunori Jo ◽  
Tetsuya Kimura ◽  
...  

AbstractLysosomes are involved in nutrient sensing via the mechanistic target of rapamycin complex 1 (mTORC1). mTORC1 is tethered to lysosomes by the Ragulator complex, a heteropentamer in which Lamtor1 wraps around Lamtor2–5. Although the Ragulator complex is required for cell migration, the mechanisms by which it participates in cell motility remain unknown. Here, we show that lysosomes move to the uropod in motile cells, providing the platform where Lamtor1 interacts with the myosin phosphatase Rho-interacting protein (MPRIP) independently of mTORC1 and interferes with the interaction between MPRIP and MYPT1, a subunit of myosin light chain phosphatase (MLCP), thereby increasing myosin II–mediated actomyosin contraction. Additionally, formation of the complete Ragulator complex is required for leukocyte migration and pathophysiological immune responses. Together, our findings demonstrate that the lysosomal Ragulator complex plays an essential role in leukocyte migration by activating myosin II through interacting with MPRIP.


2021 ◽  
Vol 82 (4) ◽  
Author(s):  
Hannah Lu ◽  
Kimoon Um ◽  
Daniel M. Tartakovsky

Sign in / Sign up

Export Citation Format

Share Document