scholarly journals Aggregated IgE mimic interleukin-3-induced histamine synthesis by murine hematopoietic progenitors

Blood ◽  
1994 ◽  
Vol 84 (4) ◽  
pp. 1098-1107 ◽  
Author(s):  
F Salachas ◽  
E Schneider ◽  
FM Lemoine ◽  
B Lebel ◽  
M Daeron ◽  
...  

Abstract Similar to interleukin-3 (IL-3), IgE acts on murine bone marrow cells by inducing histamine production. This effect does not result from degranulation of histamine-containing cells, but from histamine synthesis, as assessed by the following findings. (1) The histamine content of freshly isolated bone marrow cells is too low to account for the increase in extracellular histamine levels. (2) Neither IL-3 nor IgE induced histamine production in the presence of the specific inhibitor of histidine decarboxylase (HDC), the histamine-forming enzyme. (3) Both the enzymatic activity and the mRNA expression of HDC were enhanced in response to IL-3 or IgE. Artificial aggregation or formation of IgE immune complexes augmented ther effect on histamine synthesis, indicating that the aggregated form is responsible for this biologic activity. Yet, it is apparently not mediated by Fc epsilon RI because their cross-linkage by dinitrophenyl bovine serum albumin after presensitization with IgE did not induce histamine production by hematopoietic progenitors. Among other aggregated isotypes tested, only IgG2a and, to a lesser extent, IgG1 had a consistent but lower effect, whereas IgM and IgA were completely inactive. The target cells of IL-3 and IgE in terms of histamine synthesis do not belong to mature bone marrow populations, especially mast cells. They copurify with hematopoietic progenitors in the low-density layers of a discontinuous Ficoll gradient where they represent around 5% of the cells, as determined by in situ hybridization. This percentage remained the same, regardless of whether the cells were stimulated by IgE or IL-3 alone or by a combination of both, suggesting a common responder cell. In accordance with this notion, histamine-producing cells could not be distinguished from each other on the basis of density, size and internal structure, or rhodamine (Rh) retention. Finally, the effect of IgE is not caused by the induction of IL-3 because anti-IL-3 antibodies did not abrogate the effect of IgE.

Blood ◽  
1994 ◽  
Vol 84 (4) ◽  
pp. 1098-1107
Author(s):  
F Salachas ◽  
E Schneider ◽  
FM Lemoine ◽  
B Lebel ◽  
M Daeron ◽  
...  

Similar to interleukin-3 (IL-3), IgE acts on murine bone marrow cells by inducing histamine production. This effect does not result from degranulation of histamine-containing cells, but from histamine synthesis, as assessed by the following findings. (1) The histamine content of freshly isolated bone marrow cells is too low to account for the increase in extracellular histamine levels. (2) Neither IL-3 nor IgE induced histamine production in the presence of the specific inhibitor of histidine decarboxylase (HDC), the histamine-forming enzyme. (3) Both the enzymatic activity and the mRNA expression of HDC were enhanced in response to IL-3 or IgE. Artificial aggregation or formation of IgE immune complexes augmented ther effect on histamine synthesis, indicating that the aggregated form is responsible for this biologic activity. Yet, it is apparently not mediated by Fc epsilon RI because their cross-linkage by dinitrophenyl bovine serum albumin after presensitization with IgE did not induce histamine production by hematopoietic progenitors. Among other aggregated isotypes tested, only IgG2a and, to a lesser extent, IgG1 had a consistent but lower effect, whereas IgM and IgA were completely inactive. The target cells of IL-3 and IgE in terms of histamine synthesis do not belong to mature bone marrow populations, especially mast cells. They copurify with hematopoietic progenitors in the low-density layers of a discontinuous Ficoll gradient where they represent around 5% of the cells, as determined by in situ hybridization. This percentage remained the same, regardless of whether the cells were stimulated by IgE or IL-3 alone or by a combination of both, suggesting a common responder cell. In accordance with this notion, histamine-producing cells could not be distinguished from each other on the basis of density, size and internal structure, or rhodamine (Rh) retention. Finally, the effect of IgE is not caused by the induction of IL-3 because anti-IL-3 antibodies did not abrogate the effect of IgE.


Blood ◽  
1996 ◽  
Vol 87 (8) ◽  
pp. 3161-3169 ◽  
Author(s):  
M Dy ◽  
A Arnould ◽  
FM Lemoine ◽  
F Machavoine ◽  
H Ziltener ◽  
...  

The calcium ionophore A23187 promotes histamine synthesis in murine bone marrow cells by increasing the expression of mRNA encoding histidine decarboxylase (HDC), the histamine-forming enzyme. The cells responsible for this biological activity copurify with hematopoietic progenitors in terms of density, light scatter characteristics, and rhodamine retention, similar to interleukin (IL) 3-induced histamine- producing cells. Yet, the effect of calcium ionophore is not mediated by IL-3. The most purified rhodamine-bright bone marrow subset contains 80% cells that respond to calcium ionophore by increased HDC mRNA expression. This high frequency makes the involvement of one particular progenitor subset in histamine synthesis unlikely. The finding that all IL-3-dependent cell lines tested so far exhibit increased histamine production and HDC mRNA expression in response to calcium influx lends further support to this notion. Cell lines requiring other growth factors or proliferating spontaneously lack this ability. Finally, it should be noted that IL-3-dependent cell lines do not produce histamine in response to their growth factor. It might, therefore, be suggested that the pathway transducing the signal for increased histamine synthesis after IL-3 receptor binding in normal hematopoietic progenitors is modified in these cell lines.


1981 ◽  
Vol 153 (2) ◽  
pp. 293-309 ◽  
Author(s):  
M Dy ◽  
B Lebel ◽  
P Kamoun ◽  
J Hamburger

Histamine production is greatly increased during culture of allograft recipient spleen cells in the presence of immunizing cells (secondary mixed leukocyte cultures [MLC]) as compared to that found in primary MLC (i.e., without previous allograft). This phenomenon appears after 24 h of culture and reaches its maximum at 48 h. Optimal increased histamine production is observed when MLC is performed with spleen cells removed from mice during rejection. This increased production of histamine during secondary MLC results from the action of a lymphokine: the histamine-producing cell stimulating factor (HCSF). This factor is released by T lymphocytes. Its production requires specific stimulation of the recipient lymphocytes because increase in histamine production during secondary MLC can be only observed when recipient cells are cultured with stimulating cells bearing at least one homology at K or D loci with immunizing cells. HCSF acts on a cell which is present in bone marrow, spleen, blood, and peritoneal cells but absent in thymus or lymph node cells. This target cell is found in the less-dense layer of a discontinuous Ficoll-gradient of bone marrow cells. HCSF is heat stable, destroyed by trypsin treatment, and has a molecular weight between 50,000 and 100,000. It acts on its target cells by increasing histidine decarboxylase activity.


Blood ◽  
1989 ◽  
Vol 73 (7) ◽  
pp. 1836-1841 ◽  
Author(s):  
M Kobayashi ◽  
BH Van Leeuwen ◽  
S Elsbury ◽  
ME Martinson ◽  
IG Young ◽  
...  

Abstract Human bone marrow cells cultured for 21 days in the presence of recombinant human interleukin-3 (IL-3) produced up to 28 times more colony-forming cells (CFC) than could be obtained from cultures stimulated with granulocyte colony stimulating factor (G-CSF) or granulocyte-macrophage CSF (GM-CSF). IL-3-cultured cells retained a multipotent response to IL-3 in colony assays but were restricted to formation of granulocyte colonies in G-CSF and granulocyte or macrophage colonies in GM-CSF. Culture of bone marrow cells in IL-3 also led to accumulation of large numbers of eosinophils and basophils. These data contrast with the effects of G-CSF, GM-CSF, and IL-3 in seven-day cultures. Here both GM-CSF and IL-3 amplified total CFC that had similar multipotential colony-forming capability in either factor. G-CSF, on the other hand, depleted IL-3-responsive colony-forming cells dramatically, apparently by causing these cells to mature into granulocytes. The data suggest that a large proportion of IL-3- responsive cells in human bone marrow express receptors for G-CSF and can respond to this factor, the majority becoming neutrophils. Furthermore, the CFC maintained for 21 days in IL-3 may be a functionally distinct population from that produced after seven days culture of bone marrow cells in either IL-3 or GM-CSF.


1994 ◽  
Vol 14 (7) ◽  
pp. 4834-4842
Author(s):  
A Dubart ◽  
F Feger ◽  
C Lacout ◽  
F Goncalves ◽  
W Vainchenker ◽  
...  

Erythropoietin (EPO) is a prime regulator of the growth and differentiation of erythroid blood cells. The EPO receptor (EPO-R) is expressed in late erythroid progenitors (mature BFU-E and CFU-E), and EPO induces proliferation and differentiation of these cells. By introducing, with a retroviral vector, a normal EPO-R cDNA into murine adult bone marrow cells, we showed that EPO is also able to induce proliferation in pluripotent progenitor cells. After 7 days of coculture with virus-producing cells, bone marrow cells were plated in methylcellulose culture in the presence of EPO, interleukin-3, or Steel factor alone or in combination. In the presence of EPO alone, EPO-R virus-infected bone marrow cells gave rise to mixed colonies comprising erythrocytes, granulocytes, macrophages and megakaryocytes. The addition of interleukin-3 or Steel factor to methylcellulose cultures containing EPO did not significantly modify the number of mixed colonies. The cells which generate these mixed colonies have a high proliferative potential as shown by the size and the ability of the mixed colonies to give rise to secondary colonies. Thus, it appears that EPO has the same effect on EPO-R-expressing multipotent cell proliferation as would a combination of several growth factors. Finally, our results demonstrate that inducing pluripotent progenitor cells to proliferate via the EPO signaling pathway has no major influence on their commitment.


Blood ◽  
1990 ◽  
Vol 76 (8) ◽  
pp. 1586-1592 ◽  
Author(s):  
Y Shibata ◽  
PG McCaffrey ◽  
H Sato ◽  
Y Oghiso

Abstract Eicosanoid release during multilineage hematopoiesis was assessed using freshly isolated mouse bone marrow cells cultured in the presence of interleukin-3 (IL-3) (10% WEHI-3 culture-conditioned medium). Cells that could release prostaglandin E2 (PGE2) when stimulated with calcium ionophore A23187, but not with phorbol ester (PMA), appeared within 4 days. The cells harvested on day 10 released 42 ng of PGE2/10(6) cells/mL after A23187 stimulation. Leukotriene B4 (LTB4) (4 ng/mL) was also detected after A23187 stimulation, but there was no detectable LTC4 (less than 0.5 ng/mL). Nonadherent bone marrow cells were isolated from 28-day cultures and cloned. All clones were strongly IL-3- dependent. Although other growth factors such as granulocyte colony- stimulating factor (G-CSF), granulocyte-macrophage CSF (GM-CSF), and CSF-1 failed to promote survival or support proliferation of the cells, three clones (11–1-A6, 3–2-D5, and 11–1-A1) showed significant increases in 3H-thymidine incorporation, respectively, after PMA treatment for 24 hours. Surviving cells displayed dominantly myeloid type morphology and phenotypic characteristics. The data suggest that IL-3 is important in the formation of PGE2-producing cells. In contrast to many macrophages (MO), neither the IL-3-dependent cell lines nor the IL-3-cultured bone marrow cells released significant amounts of PGE2 when stimulated with PMA or IL-3, although PMA and IL-3 both induced translocation of protein kinase C (PKC) to the membrane fraction. The lack of production of PGE2 and other eicosanoids by the PMA- and IL-3- stimulated cell lines was confirmed by measuring the release of 3H- arachidonic acid. The data suggest that in IL-3-dependent bone marrow cell lines the activation of eicosanoid metabolism requires elevated cellular Ca2+; PKC activation alone does not appear to be a sufficient stimulus.


1973 ◽  
Vol 138 (1) ◽  
pp. 130-142 ◽  
Author(s):  
Varda Rotter ◽  
Amiela Globerson ◽  
Ichiro Nakamura ◽  
Nathan Trainin

The immune response to SRBC was measured in the spleens of adult thymectomized, total body irradiated mice injected with various combinations of thymus and bone marrow cells together with thymic humoral factor (THF). It was found that the number of plaque-forming cells was significantly increased when THF was given in vivo immediately after thymus cell administration or when thymus cells were incubated in THF before injection. On the other hand, bone marrow cells equally treated did not manifest any T cell activity, since THF-treated bone marrow cells were not able to substitute thymus cells in the system used. The results accumulated in the present experiments indicate, therefore, that the target cells for THF activity are thymus cells which acquire a higher T helper cell capacity after THF treatment.


1972 ◽  
Vol 135 (1) ◽  
pp. 150-164 ◽  
Author(s):  
C. K. Grant ◽  
G. A. Currie ◽  
P. Alexander

Thymocytes from C57BL mice immunized with the DBA/2 lymphoma L5178Y exert in vitro an immunologically specific cytotoxic action against the target cells in the presence of bone-marrow cells. Neither the nonimmune bone marrow nor the immune thymocytes are by themselves cytotoxic. The cells in the bone marrow which take part in the cytotoxic action adhere to glass and are sensitive to anti-macrophage serum. These bone-marrow cells can also be rendered specifically cytotoxic by exposure to the supernatant obtained from a culture of immune thymocytes with the specific target cells. The thymocytes before they are confronted with the specific target cells are very radiosensitive; however, on coming into contact with the target cells, an immunologically specific increase in RNA synthesis occurs and thereafter the thymocytes' capacity to render bone-marrow cells cytotoxic is relatively radioresistant. Two classes of immune lymphocytes occur in mice immunized with allogeneic cells, those that are capable of killing target cells directly and those that produce a factor capable of rendering macrophages (or monocytes) specifically cytotoxic. In the thymus of immune animals only the latter are found while both categories are present in the spleen and lymph nodes of immune animals.


Blood ◽  
1989 ◽  
Vol 73 (7) ◽  
pp. 1836-1841
Author(s):  
M Kobayashi ◽  
BH Van Leeuwen ◽  
S Elsbury ◽  
ME Martinson ◽  
IG Young ◽  
...  

Human bone marrow cells cultured for 21 days in the presence of recombinant human interleukin-3 (IL-3) produced up to 28 times more colony-forming cells (CFC) than could be obtained from cultures stimulated with granulocyte colony stimulating factor (G-CSF) or granulocyte-macrophage CSF (GM-CSF). IL-3-cultured cells retained a multipotent response to IL-3 in colony assays but were restricted to formation of granulocyte colonies in G-CSF and granulocyte or macrophage colonies in GM-CSF. Culture of bone marrow cells in IL-3 also led to accumulation of large numbers of eosinophils and basophils. These data contrast with the effects of G-CSF, GM-CSF, and IL-3 in seven-day cultures. Here both GM-CSF and IL-3 amplified total CFC that had similar multipotential colony-forming capability in either factor. G-CSF, on the other hand, depleted IL-3-responsive colony-forming cells dramatically, apparently by causing these cells to mature into granulocytes. The data suggest that a large proportion of IL-3- responsive cells in human bone marrow express receptors for G-CSF and can respond to this factor, the majority becoming neutrophils. Furthermore, the CFC maintained for 21 days in IL-3 may be a functionally distinct population from that produced after seven days culture of bone marrow cells in either IL-3 or GM-CSF.


Sign in / Sign up

Export Citation Format

Share Document