Erythropoietin Induces Tyrosine Phosphorylation of the Interleukin-3 Receptor β Subunit (βIL3 ) and Recruitment of Stat5 to Possible Stat5-Docking Sites in βIL3

Blood ◽  
1997 ◽  
Vol 89 (12) ◽  
pp. 4327-4336 ◽  
Author(s):  
Hiroshi Chin ◽  
Hiroshi Wakao ◽  
Atsushi Miyajima ◽  
Ryuichi Kamiyama ◽  
Nobuyuki Miyasaka ◽  
...  

Abstract The receptors for erythropoietin (Epo) and interleukin-3 (IL-3) both induce the ligand-dependent activation of the Jak2 tyrosine kinase. Activated Jak2 then phosphorylates these receptors and thereby recruits various signaling molecules containing the Src homology (SH)-2 domain, including Stat5, to the tyrosine phosphorylated receptors. In the present study, we demonstrate that Epo stimulation induces unidirectional cross-phosphorylation of the IL-3 receptor β subunit (βIL3) on tyrosines and its rapid and transient association with Stat5 in murine IL-3–dependent cell lines engineered to express the Epo receptor (EpoR). Using cell lines expressing various EpoR mutants, it was demonstrated that the Epo-induced tyrosine phosphorylation of βIL3 is dependent on the membrane-proximal EpoR cytoplasmic region involved in the activation of Jak2, but not on the extracellular and transmembrane regions or on the carboxy-terminal 145 amino acid region containing all the intracellular tyrosine residues. It was also shown that IL-3 induces rapid and dose-dependent association of Jak2 with βIL3. However, Epo failed to induce any detectable association of βIL3 with Jak2 or the EpoR. The present study also demonstrates that in IL-3–stimulated cells, an ovine Stat5 mutant harboring a substitution of Tyr694 to Phe, which abolishes the tyrosine phosphorylation required for activation, fails to dimerize with endogenous Stat5, shows sustained binding with tyrosine-phosphorylated βIL3, and inhibits the tyrosine phosphorylation of endogenous Stat5. These results suggest that βIL3 may have Stat5 docking sites, similar to those found in the EpoR, that facilitate the activation of Stat5 by Jak2 and raise the possibility that Epo may cross-activate or transmodulate the IL-3 receptor signaling pathways.

Blood ◽  
1996 ◽  
Vol 88 (12) ◽  
pp. 4415-4425 ◽  
Author(s):  
H Chin ◽  
N Nakamura ◽  
R Kamiyama ◽  
N Miyasaka ◽  
JN Ihle ◽  
...  

Erythropoietin (Epo) and interleukin-3 (IL-3) stimulate activation of the Jak2 tyrosine kinase and induce tyrosine phosphorylation and activation of Stat5. In the present study, we have shown that Epo or IL-3 stimulation induces binding of Stat5 to the tyrosine-phosphorylated Epo receptor (EpoR) or IL-3 receptor beta subunit (betaIL3), respectively, in IL-3-dependent 32D cells expressing the EpoR. The binding of Stat5 to these cytokine receptors was shown to be rapid and transient, occurring within 1 minute of stimulation of cells and significantly decreasing after 5 minutes of cell treatment. In vivo binding experiments in COS cells showed that binding of Stat5 to the EpoR was mediated through the Stat5 Src homology 2 (SH2) domain. In vitro binding studies further showed that Stat5, but not other Stats examined, bound specifically to tyrosine-phosphorylated recombinant EpoR fusion proteins. In these in vivo and in vitro binding studies, Stat5 bound, albeit to a lesser degree, to truncated EpoR mutants in which all the intracellular tyrosines except Y-343 were removed. Furthermore, EpoR-derived synthetic phosphotyrosine peptides corresponding to Y-343, Y-401, Y-431, and Y-479 inhibited the in vitro binding of Stat5. When expressed in 32D cells, a mutant EpoR in which all the intracellular tyrosines were removed by carboxy-terminal truncation showed a significantly impaired ability to induce tyrosine phosphorylation of Stat5, particularly at low concentrations of Epo, but exhibited an increased sensitivity to Epo for growth signaling as compared with the wild-type EpoR. These results indicate that Stat5 specifically and transiently binds to the EpoR through the interaction between the Stat5 SH2 domain and specific phosphorylated tyrosines, including Y-343, in the EpoR cytoplasmic domain. It was implied that betaIL3 may also have similar Stat5 docking sites. The Stat5 docking sites in the EpoR were shown to facilitate specific activation of Stat5, which, however, may not be required for the EpoR-mediated growth signaling.


Blood ◽  
1997 ◽  
Vol 89 (9) ◽  
pp. 3166-3174 ◽  
Author(s):  
Dwayne L. Barber ◽  
Jacqueline M. Mason ◽  
Toru Fukazawa ◽  
Kris A. Reedquist ◽  
Brian J. Druker ◽  
...  

Abstract Transformation of hematopoietic cells by the Bcr-abl oncoprotein leads to constitutive tyrosine phosphorylation of a number of cellular polypeptides that function in normal growth factor-dependent cell proliferation. Recent studies have shown that the CrkL adaptor protein and the Cbl protooncoprotein are constitutively tyrosine phosphorylated and form a preformed complex in cells expressing Bcr-abl. In the current study, we have examined cytokine-dependent tyrosine phosphorylation of Cbl and its association with Crk proteins. Erythropoietin (EPO) and interleukin-3 induced a dose and time-dependent tyrosine phosphorylation of Cbl in both EPO-dependent Ba/F3 and DA-3 transfectants, and the erythroid cell line HCD-57. Furthermore, once phosphorylated, Cbl associated with Crk adaptor proteins. Of the three Crk isoforms expressed in hematopoietic cells (CrkL, CrkII, and CrkI), tyrosine phosphorylated Cbl binds preferentially to CrkL and CrkII. The amount of Cbl associated with CrkL and CrkII exceeded the fraction of Cbl associated with Grb2 indicating that unlike other receptor systems, the Cbl-Crk association represents the dominant complex of Cbl in growth factor-stimulated hematopoietic cells. In factor-dependent hematopoietic cell lines, CrkL constitutively associated with the guanine nucleotide release factor, C3G, which is known to interact via Crk src-homology 3 (SH3) domains. Our data suggest that the inducible Cbl-Crk association is a proximal component of a signaling pathway downstream of multiple cytokine receptors.


2002 ◽  
Vol 368 (3) ◽  
pp. 885-894 ◽  
Author(s):  
Nicholas R.D. PALING ◽  
Melanie J. WELHAM

The tyrosine phosphatase SHP-1 (Src homology phosphatase-1) has been widely implicated as a negative regulator of signalling in immune cells. We have investigated in detail the role of SHP-1 in interleukin-3 (IL-3) signal transduction by inducibly expressing wild-type (WT), C453S (substrate-trapping) and R459M (catalytically inactive) forms of SHP-1 in the IL-3-dependent cell line BaF/3. Expression of WT SHP-1 had little impact on IL-3-induced proliferation, but enhanced apoptosis following IL-3 withdrawal. Expression of R459M SHP-1 increased the proliferative response of BaF/3 cells to IL-3 and increased cell survival at low doses of IL-3 and following IL-3 withdrawal. Investigation into the biochemical consequences resulting from expression of these SHP-1 variants demonstrated that the β chain of the IL-3 receptor (Aic2A) was hypo-phosphorylated in cells expressing WT SHP-1 and hyper-phosphorylated in those expressing R459M SHP-1. Further, ectopic expression of the trapping mutant, C453S SHP-1, protected Aic2A from dephosphorylation, suggesting that Aic2A is a SHP-1 substrate in BaF/3 cells. Examination of overall levels of tyrosine phosphorylation demonstrated that they were not perturbed in these transfectants. Activation-specific phosphorylation of STAT (signal transducer and activator of transcription) 5a/b, protein kinase B and ERK (extracellular-signal-regulated kinase)-1 and −2 was also unaffected by expression of WT or R459M SHP-1. However, overall levels of IL-3-induced tyrosine phosphorylation of STAT5 were reduced upon expression of WT SHP-1 and increased when R459M SHP-1 was expressed, consistent with STAT5 being a potential SHP-1 substrate. These results demonstrate that SHP-1 acts to negatively regulate IL-3-driven survival and proliferation, potentially via regulation of tyrosine phosphorylation of Aic2A and STAT5.


1987 ◽  
Vol 6 (13) ◽  
pp. 3979-3984 ◽  
Author(s):  
S. Koyasu ◽  
A. Tojo ◽  
A. Miyajima ◽  
T. Akiyama ◽  
M. Kasuga ◽  
...  

1988 ◽  
Vol 8 (5) ◽  
pp. 2214-2218 ◽  
Author(s):  
A O Morla ◽  
J Schreurs ◽  
A Miyajima ◽  
J Y Wang

By immunoblotting with antibodies for phosphotyrosine, we have demonstrated that the hematopoietic growth factors interleukin-2, interleukin-3, interleukin-4, and granulocyte-macrophage colony-stimulating factor stimulate the tyrosine phosphorylation of specific sets of proteins in murine hematopoietic progenitor cell lines. The stimulation of tyrosine phosphorylation is a receptor-dependent transient event. The effect of these hematopoietic growth factors on protein tyrosine phosphorylation was not mediated through protein kinase C.


1989 ◽  
Vol 169 (6) ◽  
pp. 2059-2071 ◽  
Author(s):  
Y Weinstein ◽  
K Morishita ◽  
J L Cleveland ◽  
J N Ihle

The expression of the murine TCR-gamma genes was examined in a series of IL-3-dependent and growth factor-independent cell lines. All of the IL-3-dependent cell lines, but none of the IL-3-independent lines, expressed high levels of one or more of the gamma genes but did not express the TCR-beta genes. None of the cell lines expressing the gamma loci contained detectable genomic gamma gene rearrangements. Sequencing of cDNA clones from two of the cell lines demonstrated that transcription was from nonrearranged gamma loci based on the presence of sequences in the cDNAs that are found immediately 5' of the J gamma 4 and J gamma 2 genes. The expression of gamma transcripts was dependent upon IL-3 and no transcripts were detectable within 6-8 h after the removal of IL-3. Readdition of IL-3, but not granulocyte CSF, resulted in the reappearance of gamma transcripts within 30 min. The results demonstrate that IL-3 regulates the expression of nonrearranged gamma loci. Since expression is required for rearrangement, it can be hypothesized that IL-3 may influence the ability of lymphoid/myeloid progenitors to commit to the T cell lineage.


2001 ◽  
Vol 360 (1) ◽  
pp. 57-66 ◽  
Author(s):  
Michael D. SCHALLER ◽  
Erik M. SCHAEFER

Paxillin is a focal-adhesion-associated, tyrosine-phosphorylated protein. In cells transformed by the src, crk or BCR-Abl oncogenes, the phosphotyrosine content of paxillin is elevated. In normal cells paxillin functions in signalling following integrin-dependent cell adhesion or exposure to a number of stimuli, including growth factors and neuropeptides. These stimuli induce tyrosine phosphorylation of paxillin, regulating the association of Src homology 2 domain-containing signalling molecules with paxillin. There are multiple sites of tyrosine phosphorylation on paxillin. To elucidate the role of paxillin in transducing signals in response to various stimuli, it is essential to identify all of the sites of phosphorylation on paxillin and to define which residues are phosphorylated in response to distinct stimuli. We describe two new sites of tyrosine phosphorylation on paxillin, residues at positions 40 and 88. Using paxillin variants with phenylalanine substitutions at phosphorylation sites and phospho-specific paxillin antibodies, tyrosine phosphorylation of paxillin in response to distinct stimuli was examined. The results demonstrate that Tyr31 and Tyr118, which are binding sites for Crk, are major sites of tyrosine phosphorylation following cell adhesion or stimulation with platelet-derived growth factor or angiotensin II. Thus multiple stimuli may elicit similar signalling events downstream of paxillin.


Sign in / Sign up

Export Citation Format

Share Document