scholarly journals The Low-Density Lipoprotein Receptor-Related Protein (LRP) Mediates Clearance of Coagulation Factor Xa In Vivo

Blood ◽  
1998 ◽  
Vol 91 (2) ◽  
pp. 555-560 ◽  
Author(s):  
Masaaki Narita ◽  
Amy E. Rudolph ◽  
Joseph P. Miletich ◽  
Alan L. Schwartz

Abstract Blood coagulation factor X plays a pivotal role in the clotting cascade. When administered intravenously to mice, the majority of activated factor X (factor Xa) binds to α2-macroglobulin (α2M) and is rapidly cleared from the circulation into liver. We show here that the low-density lipoprotein receptor-related protein (LRP) is responsible for factor Xa catabolism in vivo. Mice overexpressing a 39-kD receptor-associated protein that binds to LRP and inhibits its ligand binding activity displayed dramatically prolonged plasma clearance of 125I-factor Xa. Preadministration of α2M-proteinase complexes (α2M*) also diminished the plasma clearance of125I-factor Xa in a dose-dependent fashion. The clearance of preformed complexes of 125I-factor Xa and α2M was similar to that of 125I-factor Xa alone and was also inhibited by mice overexpressing a 39-kD receptor-associated protein. These results thus suggest that, in vivo, factor Xa is metabolized via LRP after complex formation with α2M.

Blood ◽  
1998 ◽  
Vol 91 (2) ◽  
pp. 555-560 ◽  
Author(s):  
Masaaki Narita ◽  
Amy E. Rudolph ◽  
Joseph P. Miletich ◽  
Alan L. Schwartz

Blood coagulation factor X plays a pivotal role in the clotting cascade. When administered intravenously to mice, the majority of activated factor X (factor Xa) binds to α2-macroglobulin (α2M) and is rapidly cleared from the circulation into liver. We show here that the low-density lipoprotein receptor-related protein (LRP) is responsible for factor Xa catabolism in vivo. Mice overexpressing a 39-kD receptor-associated protein that binds to LRP and inhibits its ligand binding activity displayed dramatically prolonged plasma clearance of 125I-factor Xa. Preadministration of α2M-proteinase complexes (α2M*) also diminished the plasma clearance of125I-factor Xa in a dose-dependent fashion. The clearance of preformed complexes of 125I-factor Xa and α2M was similar to that of 125I-factor Xa alone and was also inhibited by mice overexpressing a 39-kD receptor-associated protein. These results thus suggest that, in vivo, factor Xa is metabolized via LRP after complex formation with α2M.


Biochemistry ◽  
2014 ◽  
Vol 54 (2) ◽  
pp. 481-489 ◽  
Author(s):  
James H. Kurasawa ◽  
Svetlana A. Shestopal ◽  
Samuel A. Woodle ◽  
Mikhail V. Ovanesov ◽  
Timothy K. Lee ◽  
...  

Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 1019-1019
Author(s):  
Andrey G. Sarafanov ◽  
Evgeny M. Makogonenko ◽  
Olav M. Andersen ◽  
Alexey V. Khrenov ◽  
Irina A. Mikhailenko ◽  
...  

Abstract Catabolism of coagulation factor VIII (fVIII) is mediated by the hepatic multiligand receptor low-density lipoprotein receptor-related protein (LRP). The ligand-binding sites of LRP are formed by complement-type repeats (CRs) organized in four clusters, among which clusters II and IV bind most of LRP ligands. In turn, fVIII contains two major LRP-binding sites, located in A2 and A3 domains (Saenko et al, JBC 1999; Bovenschen et al, JBC 2003). In present work, we characterized binding sites in LRP for A2 domain (A2) and heterodimer A1/A3-C1-C2 (HD), the products of dissociation of activated fVIII. Using a baculovirus expression system, we generated CR clusters II, III and IV, along with eight overlapping CR triplets encompassing clusters II and IV. Surface plasmon resonance-based assays demonstrated that both A2 and HD bind to clusters II and IV, and to the same sets of their CR triplets with similar affinities (KDs 25–50 nM). The same kinetic parameters of interaction of both A2 and HD were observed for several CR doublets from cluster II, shown previously to be minimal binding sites for a classical ligand of LRP, receptor associated protein (RAP) (Andersen et al, JBC 2000). The specificity of A2 and HD interactions with all tested fragments of LRP was confirmed by the ability of RAP to inhibit these interactions, and by the ability of these fragments to inhibit binding of 125I-A2 and 125I-HD to immobilized LRP in a solid-phase assay, and LRP-mediated catabolism of 125I-A2 and 125I-HD in cell culture. Notably, some mutations of the LRP-binding site in A2 resulted in significant reduction or abolishment of its binding to certain fragments of LRP, while the binding to other LRP fragments was less affected. In summary, we demonstrated that i) A2 and HD interact with LRP via its multiple binding sites spanning CRs 3–8 in cluster II and CRs 24–29 in cluster IV, and ii) the elementary binding unit of LRP is formed by at least two adjacent CRs, similar to that shown for RAP. The above data also suggest that besides regulating fVIII levels, LRP also plays a role in clearance of the products of dissociation of activated fVIII.


2009 ◽  
Vol 421 (2) ◽  
pp. 273-282 ◽  
Author(s):  
Jan K. Jensen ◽  
Klavs Dolmer ◽  
Christine Schar ◽  
Peter G. W. Gettins

RAP (receptor-associated protein) is a three domain 38 kDa ER (endoplasmic reticulum)-resident protein that is a chaperone for the LRP (low-density lipoprotein receptor-related protein). Whereas RAP is known to compete for binding of all known LRP ligands, neither the location, the number of binding sites on LRP, nor the domains of RAP involved in binding is known with certainty. We have systematically examined the binding of each of the three RAP domains (D1, D2 and D3) to tandem and triple CRs (complement-like repeats) that span the principal ligand-binding region, cluster II, of LRP. We found that D3 binds with low nanomolar affinity to all (CR)2 species examined. Addition of a third CR domain increases the affinity for D3 slightly. A pH change from 7.4 to 5.5 gave only a 6-fold increase in Kd for D3 at 37 °C, whereas temperature change from 22 °C to 37 °C has a similar small effect on affinity, raising questions about the recently proposed D3-destabilization mechanism of RAP release from LRP. Surprisingly, and in contrast to literature suggestions, D1 and D2 also bind to most (CR)2 and (CR)3 constructs with nanomolar affinity. Although this suggested that there might be three high-affinity binding sites in RAP for LRP, studies with intact RAP showed that only two binding sites are available in the intact chaperone. These findings suggest a new model for RAP to function as a folding chaperone and also for the involvement of YWTD domains in RAP release from LRP in the Golgi.


Sign in / Sign up

Export Citation Format

Share Document