scholarly journals Wilms' Tumor (WT1) Gene Mutations Occur Mainly in Acute Myeloid Leukemia and May Confer Drug Resistance

Blood ◽  
1998 ◽  
Vol 91 (8) ◽  
pp. 2961-2968 ◽  
Author(s):  
L. King-Underwood ◽  
K. Pritchard-Jones

In a previous study of acute leukemia, we have shown thatWT1 gene mutations occur in both myeloid and biphenotypic subtypes, where they are associated with refractoriness to standard induction chemotherapy. We have now extended this study to a total of 67 cases (34 acute myeloid leukemia [AML], 23 acute lymphoblastic leukemia [ALL], 10 acute undifferentiated leukemia [AUL]/biphenotypic) and find that WT1 mutations occur in 14% of AML and 20% of biphenotypic leukemia, but are rare in ALL (one case). In contrast to the findings in Wilms' tumor, where mutations in the WT1 gene usually behave according to Knudson's two hit model for tumor suppressor genes, seven of eight leukemia-associated WT1 mutations are heterozygous, implying a dominant or dominant-negative mode of action in hematopoietic cells. In AML, the presence of a WT1 mutation is associated with failure to achieve complete remission and a lower survival rate. These data (1) confirm that WT1 mutations underlie a similar proportion of cases of AML to that seen in Wilms' tumors and (2) show for the first time that WT1 mutations can contribute to leukemogenesis of lymphoid as well as myeloid origin, suggesting that its normal role in hematopoiesis lies at a very early progenitor stage. The relationship of WT1 mutation to chemoresistance merits further investigation.

Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 28-28
Author(s):  
Hassan Awada ◽  
Arda Durmaz ◽  
Carmelo Gurnari ◽  
Misam Zawit ◽  
Sunisa Kongkiatkamon ◽  
...  

Mutations in tumor suppressor genes and oncogenes are both potentially therapeutically actionable in acute myeloid leukemia (AML). The Wilms' Tumor 1 (WT1) gene is located on 11p13 and encodes a zinc finger transcription factor which has been found to be overexpressed and mutated in AML. In normal development, WT1 is only expressed in a small subset of hematopoietic stem cells. While its overexpression suggests an oncogenic role, the invariable presence of mutations in the cysteine-histidine zinc finger domains indicates a tumor suppressor function, similar to that in WAGR syndrome/11p deletion syndrome in which it was first discovered. Like its unknown function in AML, the clinical significance and genetic associations of WT1 mutations have been also controversial. Although studies of WT1 mutations in AML have been conducted, the lack of solid clinical and molecular characterization of large WT1-mutant (WT1MT) AML cohort has hampered its definition. In this study, we took advantage of a compendia of genomic results from Cleveland Clinic and publicly available data of 2188 AML patients (primary (p)AML, n= 1636; secondary (s)AML, n= 433; therapy-related (t)AML, n= 119, excluding cases with acute promyelocytic leukemia, MLL-rearrangement, and core-binding factor AML). While several reports only focused on cytogenetic normal AML (CN-AML), which represented 61% of our cohort, we additionally included all other cytogenetic risk groups. In total, WT1 mutations were detected in 5% (114/2188) of patients. WT1 mutations were enriched in pAML (85%) compared to sAML (11%) and tAML (4%). Thirty-nine patients (13%) carried more than 1 WT1 mutation. WT1MT were younger [59 vs 64 years, P=0.0002] and more often females (55% vs 45%, P=0.03) as compared to WT1 wild type (WT1WT) patients. Univariate analyses of baseline parameters showed that WT1MT AML had a more proliferative phenotype with a higher WBC [15.1 vs 9.5 x109/L, P=0.03] and bone marrow blast percentages [73 vs 59%, P=0.002] and with lower platelet counts [44 vs 56 x109/L, P=0.008] compared to WT1WT cases. In the WT1MT cohort, 70% had a normal karyotype, with complex karyotype being significantly less frequent vsWT1WT patients [4 vs 16%, P=0.001]. The most common cytogenetic abnormalities in WT1MT patients included +8 (8%) followed by -9/del(9q) (3%) and -7/del(7q) (3%). Only 1 patient carried inv(3)/t(3;3) or -17/del(17p). In sum, no statistical differences in cytogenetics were found between WT1MTvsWT1WT AML patients. Next, identified mutational signatures of WT1MT patients. A panel of 44 myeloid genes and their hotspot configurations were selected according to their relevance in AML. In comparison to WT1WT AML patients, multivariate analyses showed that WT1MT patients had higher odds of biallelic CEBPA (12 vs 3%; P=0.009) and FLT3 internal tandem duplication mutations (FLT3ITD, 31 vs 16%; P=0.01) but lower odds of SRSF2 mutations (2 vs 9%, P=0.04). Since FLT3ITD has been previously described to be associated with WT1 mutations, we also focused on investigating whether mutations in the tyrosine kinase domain (TKD) were frequent in WT1MT as well. Although we found increased percentages of FLT3TKD (11%) among the WT1MT patients compared to WT1WT cohort (8%), this difference did not reach statistical significance. To uncover multifactor lesions (cytogenetic and/ or additional molecular lesions) of prognostic importance, we performed survival analyses. Although the combination of WT1 mutations and FLT3TKD shortened overall survival (OS) by 2-times in WT1MT patients vsWT1WT cases with FLT3TKD (23.7 vs 45.9 months), this result was not significant (P=0.1). In addition, the concurrent presence of other cytogenetic and molecular features didn't reveal significant impact on OS. In sum, using an adequately powered cohort, our study of the genomic landscape of WT1MT AML patients identified its genomic associations and their clinical and prognostic inferences. The application of advanced machine learning methods to large datasets of WT1MT AML patients might be crucial to capture the complex genomic interactions of WT1 gene in AML. Disclosures Carraway: BMS: Consultancy, Other: Research support, Speakers Bureau; Stemline: Consultancy, Speakers Bureau; Takeda: Other: Independent Advisory Committe (IRC); ASTEX: Other: Independent Advisory Committe (IRC); Abbvie: Other: Independent Advisory Committe (IRC); Novartis: Consultancy, Speakers Bureau; Jazz: Consultancy, Speakers Bureau. Nazha:MEI: Other: Data monitoring Committee; Novartis: Speakers Bureau; Incyte: Speakers Bureau; Jazz: Research Funding. Sekeres:Pfizer: Consultancy; BMS: Consultancy; Takeda/Millenium: Consultancy. Maciejewski:Alexion, BMS: Speakers Bureau; Novartis, Roche: Consultancy, Honoraria.


2021 ◽  
Vol 11 ◽  
Author(s):  
Gabriele Merati ◽  
Marianna Rossi ◽  
Anna Gallì ◽  
Elisa Roncoroni ◽  
Silvia Zibellini ◽  
...  

Acute leukemia of ambiguous lineage (ALAL) is a rare type of leukemia and represents an unmet clinical need. In fact, due to heterogeneity, substantial rarity and absence of clinical trials, there are no therapeutic guidelines available. We investigated the genetic basis of 10 cases of ALAL diagnosed at our centre from 2008 and 2020, through a targeted myeloid and lymphoid sequencing approach. We show that this rare group of acute leukemias is enriched in myeloid-gene mutations. In particular we found that RUNX1 mutations, which have been found double mutated in 40% of patients and tend to involve both alleles, are associated with an undifferentiated phenotype and with lineage ambiguity. Furthermore, because this feature is typical of acute myeloid leukemia with minimal differentiation, we believe that our data strengthen the idea that acute leukemia with ambiguous lineage, especially those with an undifferentiated phenotype, might be genetically more closer to acute myeloid leukemia rather than acute lymphoblastic leukemia. These data enrich the knowledge on the genetic basis of ALAL and could have clinical implications as an acute myeloid leukemia (AML) – oriented chemotherapeutic approach might be more appropriate.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 995-995 ◽  
Author(s):  
Wanlong Ma ◽  
Hagop Kantarjian ◽  
XI Zhang ◽  
Xiuqiang Wang ◽  
Zhong Zhang ◽  
...  

Abstract Abstract 995 Poster Board I-17 Several reports have suggested that mutations in the Wilms tumor 1 gene (WT1) represent an adverse prognostic factor in acute myeloid leukemia (AML). Here we examined the associations of WT1 mutations in exons 7 and 9 and the silent R301 single-nucleotide polymorphism (SNP) in exon 7 (A903G; NCBI dbSNP reference ID: rs16754) with outcome in AML patients treated at a single institution. Peripheral blood plasma and bone marrow samples from 174 newly diagnosed AML patients were tested for WT1 mutations in exons 7 and 9 by sequencing and fragment-length analysis for the detection of small deletions/insertions. Sequencing provided information on the specific genotype of the rs16754 SNP. The findings were correlated with outcome and other laboratory findings. WT1 mutation was detected in 7 of 50 (14%) AML patients <50 years of age and in 5 of 124 (4%) patients >50. The silent R301 SNP was detected at frequencies of 4% for GG, 26% for GA, and 70% for AA genotypes, but there was no difference with age. A similar SNP genotype distribution was detected in normal control subjects. WT1 mutations were associated with higher white cell count (P=0.01) and higher percentage of blasts in bone marrow (P=0.03) and peripheral blood (P=0.009). In addition, WT1 mutation was significantly associated with FLT3 mutation (P=0.002) but not NPM1 mutation (P=0.8). WT1 mutation was also significantly associated with shorter survival (P=0.025), event-free survival (P=0.002), and complete remission duration (P=0.002) in patients <50 years of age, but not in older patients. The association with shorter survival persisted when only patients with intermediate cytogenetics were considered (P=0.03). There was no correlation between WT1 mutation and response to therapy. The most striking correlation was between the presence of the GG genotype at R301 and longer survival, irrespective of age (see survival chart below). There was no difference in survival between the AA and GA groups. To the best of our knowledge, this is the first report describing correlation between survival duration and an SNP in the WT1 gene. While we confirm that the presence of WT1 mutation is associated with poor outcome in young AML patients, our data suggest that there is no clinical value in testing patients older than 50 for WT1 mutation, but that there may be value in testing adult patients of all age groups for the SNP polymorphism at R301 Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 2701-2701
Author(s):  
Aline Renneville ◽  
Nicolas Boissel ◽  
Nathalie Helevaut ◽  
Olivier Nibourel ◽  
Christine Terré ◽  
...  

Abstract Abstract 2701 The Wilms tumor 1 (WT1) gene, located at chromosome band 11p13, encodes a transcriptional regulator involved in normal hematopoietic development. The role of WT1 in acute myeloid leukemia (AML) has been underlined by the finding of WT1 overexpression in most AML cases and WT1 gene mutations in approximately 10% of AML patients. Recently, the minor allele of the silent Arg301 single nucleotide polymorphism (SNP) (rs16754), which is a 903A>G substitution in WT1 exon 7, was suggested to predict a favorable prognosis in adult patients with cytogenetically normal (CN) acute myeloid leukemia (AML). In contrast, no prognostic impact of this SNP was found in another study performed in pediatric AML. Our aim was to evaluate the frequency, the main associated features and the prognostic significance of WT1 SNP rs16754 in elderly patients with AML. Diagnostic bone marrow or peripheral blood samples were analyzed from 266 patients (age 50 to 70 years) with previously untreated de novo AML included in the French ALFA-9801 trial. WT1 SNP rs16754 and gene mutations of NPM1, CEBPA, FLT3 (internal tandem duplication, ITD), WT1 (exon 7 and 9), IDH1 and IDH2 (exon 4) were screened on genomic DNA by direct sequencing and fragment-length analysis for the detection of small insertion/deletion. The minor allele of WT1 SNP rs16754 was found in 85 (32%) out of 266 cases. Patients heterozygous or homozygous for minor allele (WT1AG or WT1GG) and patients homozygous for the major allele (WT1AA) did not significantly differ in terms of age, gender, white blood cell (WBC) count, FAB subtypes, cytogenetic categories, and gene mutations when those mutations are considered separately. However, among CN-AML, the frequency of the favorable genotype defined by the presence of NPM1 mutation or CEBPA mutation without neither FLT3-ITD nor IDH1 mutation was significantly lower in patients with at least one minor allele than in patients with two major alleles (5% vs 23% of CN-AML, p=0.02). In univariate analysis, complete remission rate was found similar between patients with at least one minor allele and patients with two major alleles (76% vs 75%, p=0.88). Patients with at least one minor allele tended to have a shorter median delay to relapse (7 vs 12.2 months, p=0.06) and had a significantly shorter overall survival compared to patients with the two major alleles (5-year OS, 14% vs 26%, p=0.02). In the subset of CN-AML (n=113), the presence of at least one minor allele was also associated with a shorter median delay to relapse (6.9 vs 12.5 months, p=0.02) but only a trend regarding overall survival was observed (5-year OS, 17% vs 30%, p=0.1). In multivariate analysis considering age, WBC count, cytogenetics (favorable, intermediate and unfavorable categories) as covariates, WT1 SNP rs16754 status was found to be an independent prognostic factor for relapse risk (HR 1.56, 95% CI 1.06 to 2.30, p=0.03) and overall survival (HR 1.54, 95% CI 1.08 to 2.20, p=0.02). Thus, in our cohort of older AML patients, the minor allele of WT1 SNP rs16754 appears to confer a relatively poor prognosis, which is in contradiction to what has been reported so far. Overall, our data suggest that WT1 SNP rs16754 is an interesting marker that may contribute to refine prognosis in AML, at least in this age group of patients. Further investigations are needed to clarify the relationship between WT1 SNP rs16754 and treatment outcome in AML and elucidate the biological effects of this SNP. Disclosures: No relevant conflicts of interest to declare.


Cancer ◽  
2009 ◽  
Vol 115 (16) ◽  
pp. 3719-3727 ◽  
Author(s):  
Aline Renneville ◽  
Nicolas Boissel ◽  
Virginie Zurawski ◽  
Laura Llopis ◽  
Valéria Biggio ◽  
...  

2014 ◽  
Vol 31 (2) ◽  
pp. 143-148 ◽  
Author(s):  
Salah Aref ◽  
Solafa El Sharawy ◽  
Mohamed Sabry ◽  
Emad Azmy ◽  
Dalia Abdel Raouf ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document