Thrombopoietin Production Is Inhibited by a Translational Mechanism

Blood ◽  
1998 ◽  
Vol 92 (11) ◽  
pp. 4023-4030 ◽  
Author(s):  
Nico Ghilardi ◽  
Adrian Wiestner ◽  
Radek C. Skoda

Abstract Thrombopoietin (TPO) is a lineage-dominant hematopoietic cytokine that regulates megakaryopoiesis and platelet production. The major site of TPO biosynthesis is the liver. Despite easily detectable levels of liver TPO mRNA, the circulating TPO serum levels are very low. We have observed that translation of TPO mRNA is inhibited by the presence of inhibitory elements in the 5′-untranslated region (5′-UTR). Alternative promoter usage and differential splicing generate at least three TPO mRNA isoforms that differ in the composition of their 5′-UTR. Using mutational analysis we show that physiologically the translation of these TPO mRNA isoforms is strongly inhibited by the presence of AUG codons, which define several short open reading frames (ORFs) in the 5′-UTR and suppress efficient initiation at the physiologic start site. The two regularly spliced isoforms, which account for 98% of TPO mRNA, were almost completely inhibited, whereas a rare splice variant that lacks exon 2 can be more efficiently translated. Thus, inhibition of translation of the TPO mRNA is an efficient mechanism to prevent overproduction of this highly potent cytokine.

Blood ◽  
1998 ◽  
Vol 92 (11) ◽  
pp. 4023-4030 ◽  
Author(s):  
Nico Ghilardi ◽  
Adrian Wiestner ◽  
Radek C. Skoda

Thrombopoietin (TPO) is a lineage-dominant hematopoietic cytokine that regulates megakaryopoiesis and platelet production. The major site of TPO biosynthesis is the liver. Despite easily detectable levels of liver TPO mRNA, the circulating TPO serum levels are very low. We have observed that translation of TPO mRNA is inhibited by the presence of inhibitory elements in the 5′-untranslated region (5′-UTR). Alternative promoter usage and differential splicing generate at least three TPO mRNA isoforms that differ in the composition of their 5′-UTR. Using mutational analysis we show that physiologically the translation of these TPO mRNA isoforms is strongly inhibited by the presence of AUG codons, which define several short open reading frames (ORFs) in the 5′-UTR and suppress efficient initiation at the physiologic start site. The two regularly spliced isoforms, which account for 98% of TPO mRNA, were almost completely inhibited, whereas a rare splice variant that lacks exon 2 can be more efficiently translated. Thus, inhibition of translation of the TPO mRNA is an efficient mechanism to prevent overproduction of this highly potent cytokine.


1991 ◽  
Vol 11 (9) ◽  
pp. 4306-4313 ◽  
Author(s):  
B A Arrick ◽  
A L Lee ◽  
R L Grendell ◽  
R Derynck

We have cloned and sequenced the 5' untranslated region of the transforming growth factor-beta 3 (TGF-beta 3) mRNA as well as the adjacent genomic sequence. S1 nuclease analysis identified a single transcription start site. We have thus determined that the 5' untranslated region is about 1.1 kb long and contains 11 open reading frames. In vitro translation of the TGF-beta 3 precursor coding sequence was markedly inhibited by the presence of the 5' untranslated region. Similarly, when the 5' untranslated region of TGF-beta 3 was introduced upstream of the coding sequence of chloramphenicol acetyltransferase, in vitro translation was inhibited. Furthermore, upon transfection into 293 cells, chloramphenicol acetyltransferase expression was inhibited by the 5' untranslated region of TGF-beta 3. The degree of translational inhibition was inversely proportional to the amount of transfected DNA. Mutation analysis implicated multiple segments of the 5' untranslated region as contributing to the inhibitory effect. Deletion of much of the 5'-most 640 nucleotides, including 8 of the 11 upstream ATGs, relieved much but not all of the inhibitory influence of the 5' untranslated region of TGF-beta 3 mRNA. The two upstream open reading frames closest to the initiator codon for the TGF-beta 3 coding sequence also decreased translational efficiency, since mutation of either ATG resulted in increased translation. Transfection results with T47-D cells, a cell line which expresses TGF-beta 3 mRNA, were similar to those obtained with the 293 cell line. Thus, TGF-beta 3 mRNA is a recent example of an expanding group of growth-related mRNAs in which the 5' untranslated region contains upstream open reading frames and other sequences which inhibit translation.


2000 ◽  
Vol 275 (40) ◽  
pp. 30787-30793 ◽  
Author(s):  
Hedda A. Meijer ◽  
Wim J. A. G. Dictus ◽  
Eelco D. Keuning ◽  
Adri A. M. Thomas

1994 ◽  
Vol 14 (5) ◽  
pp. 2936-2945
Author(s):  
B M Moats-Staats ◽  
H W Jarvis ◽  
A J D'Ercole ◽  
A D Stiles

During the course of antisense oligodeoxynucleotide (oligo) inhibition experiments investigating the role of insulin-like growth factor I (IGF-I) in the WI-38 cell cycle, we found that a sense-strand oligo (S oligo), used as a control, inhibited DNA synthesis 90 to 95%. S1 nuclease protection assays demonstrated that this S oligo formed intracellular duplexes with WI-38 RNA, and Northern (RNA) hybridization analyses demonstrated specific hybridization of this 32P-labeled S oligo to 1.8-, 2.3-, and 3.2-kb RNAs. We have cloned and sequenced a 2,251-bp cDNA, designated BB1, corresponding to the 2.3-kb RNA. Decoding of the BB1 cDNA sequence reveals several open reading frames arranged in a motif similar to that seen in proteins subject to translational control mechanisms. Homology searches of nucleic acid and protein data bases reveal no significant homology of BB1 with known sequences other than a 234-bp region in the BB1 5' untranslated region that shared 97% homology with a region in the 3' untranslated region of the human cdc42 mRNA. S1 nuclease protection analyses performed with IGF-I gene fragments and computer homology searches demonstrated that the BB1 RNA does not derive from transcription from the opposite strand of the IGF-I gene. Northern hybridization analyses of RNA extracted from serum-starved HeLa S3 cells demonstrated that steady-state BB1 RNA levels increased upon serum growth stimulation, with steady-state levels peaking 4 h after release from the block induced by serum starvation. Antisense oligo inhibition experiments using specific BB1 antisense oligos targeted to the putative open reading frames of the BB1 RNA reduce DNA synthesis of HeLa S3 cells to 15% of control levels, indicating that the BB1 RNA is essential for cell cycle traversal and, as such, encodes a growth-reguLating gene product.


1994 ◽  
Vol 14 (5) ◽  
pp. 2936-2945 ◽  
Author(s):  
B M Moats-Staats ◽  
H W Jarvis ◽  
A J D'Ercole ◽  
A D Stiles

During the course of antisense oligodeoxynucleotide (oligo) inhibition experiments investigating the role of insulin-like growth factor I (IGF-I) in the WI-38 cell cycle, we found that a sense-strand oligo (S oligo), used as a control, inhibited DNA synthesis 90 to 95%. S1 nuclease protection assays demonstrated that this S oligo formed intracellular duplexes with WI-38 RNA, and Northern (RNA) hybridization analyses demonstrated specific hybridization of this 32P-labeled S oligo to 1.8-, 2.3-, and 3.2-kb RNAs. We have cloned and sequenced a 2,251-bp cDNA, designated BB1, corresponding to the 2.3-kb RNA. Decoding of the BB1 cDNA sequence reveals several open reading frames arranged in a motif similar to that seen in proteins subject to translational control mechanisms. Homology searches of nucleic acid and protein data bases reveal no significant homology of BB1 with known sequences other than a 234-bp region in the BB1 5' untranslated region that shared 97% homology with a region in the 3' untranslated region of the human cdc42 mRNA. S1 nuclease protection analyses performed with IGF-I gene fragments and computer homology searches demonstrated that the BB1 RNA does not derive from transcription from the opposite strand of the IGF-I gene. Northern hybridization analyses of RNA extracted from serum-starved HeLa S3 cells demonstrated that steady-state BB1 RNA levels increased upon serum growth stimulation, with steady-state levels peaking 4 h after release from the block induced by serum starvation. Antisense oligo inhibition experiments using specific BB1 antisense oligos targeted to the putative open reading frames of the BB1 RNA reduce DNA synthesis of HeLa S3 cells to 15% of control levels, indicating that the BB1 RNA is essential for cell cycle traversal and, as such, encodes a growth-reguLating gene product.


Genetics ◽  
1989 ◽  
Vol 121 (2) ◽  
pp. 393-393
Author(s):  
M Jakowec ◽  
P Prentki ◽  
M Chandler ◽  
D J Galas

1990 ◽  
Vol 221 (2) ◽  
pp. 227-234 ◽  
Author(s):  
Dulal Borthakur ◽  
Michele Basche ◽  
William J. Buikema ◽  
Pritty B. Borthakur ◽  
Robert Haselkorn

Sign in / Sign up

Export Citation Format

Share Document