T20/DP178, an Ectodomain Peptide of Human Immunodeficiency Virus Type 1 gp41, Is an Activator of Human Phagocyte N-Formyl Peptide Receptor

Blood ◽  
1999 ◽  
Vol 93 (11) ◽  
pp. 3885-3892 ◽  
Author(s):  
Shao Bo Su ◽  
Wang-hua Gong ◽  
Ji-Liang Gao ◽  
Wei-Ping Shen ◽  
Michael C. Grimm ◽  
...  

Human immunodeficiency virus type 1 (HIV-1) envelope protein gp41 mediates viral fusion with human host cells. The peptide segment T20/DP178, located in the C-terminus of the ectodomain of gp41, interacts with the N-terminal leucine zipper-like domain on gp41 to establish the fusogenic conformation of the virus. Synthetic T20/DP178 peptide is highly efficacious in inhibiting HIV-1 infection in vitro by disrupting the transformation of fusogenic status of viral gp41; thus, it has been proposed for clinical trial. We report that synthetic T20/DP178 is a chemoattractant and activator of human peripheral blood phagocytes but not of T lymphocytes. We further demonstrate that T20/DP178 specifically activates a seven-transmembrane, G-protein–coupled phagocyte receptor for N-formylated chemotactic peptides, formyl peptide receptor (FPR). Moreover, synthetic T20/DP178 analogs lacking N-terminal amino acids acted as FPR antagonists. Our results suggest that gp41 peptides regulate phagocyte function via FPR and identify a novel mechanism by which HIV-1 may modulate innate immunity.

Blood ◽  
1999 ◽  
Vol 93 (11) ◽  
pp. 3885-3892 ◽  
Author(s):  
Shao Bo Su ◽  
Wang-hua Gong ◽  
Ji-Liang Gao ◽  
Wei-Ping Shen ◽  
Michael C. Grimm ◽  
...  

Abstract Human immunodeficiency virus type 1 (HIV-1) envelope protein gp41 mediates viral fusion with human host cells. The peptide segment T20/DP178, located in the C-terminus of the ectodomain of gp41, interacts with the N-terminal leucine zipper-like domain on gp41 to establish the fusogenic conformation of the virus. Synthetic T20/DP178 peptide is highly efficacious in inhibiting HIV-1 infection in vitro by disrupting the transformation of fusogenic status of viral gp41; thus, it has been proposed for clinical trial. We report that synthetic T20/DP178 is a chemoattractant and activator of human peripheral blood phagocytes but not of T lymphocytes. We further demonstrate that T20/DP178 specifically activates a seven-transmembrane, G-protein–coupled phagocyte receptor for N-formylated chemotactic peptides, formyl peptide receptor (FPR). Moreover, synthetic T20/DP178 analogs lacking N-terminal amino acids acted as FPR antagonists. Our results suggest that gp41 peptides regulate phagocyte function via FPR and identify a novel mechanism by which HIV-1 may modulate innate immunity.


2008 ◽  
Vol 82 (14) ◽  
pp. 7022-7033 ◽  
Author(s):  
Terrence M. Dobrowsky ◽  
Yan Zhou ◽  
Sean X. Sun ◽  
Robert F. Siliciano ◽  
Denis Wirtz

ABSTRACT The fusion of human immunodeficiency virus type 1 (HIV-1) to host cells is a dynamic process governed by the interaction between glycoproteins on the viral envelope and the major receptor, CD4, and coreceptor on the surface of the cell. How these receptors organize at the virion-cell interface to promote a fusion-competent site is not well understood. Using single-molecule force spectroscopy, we map the tensile strengths, lifetimes, and energy barriers of individual intermolecular bonds between CCR5-tropic HIV-1 gp120 and its receptors CD4 and CCR5 or CXCR4 as a function of the interaction time with the cell. According to the Bell model, at short times of contact between cell and virion, the gp120-CD4 bond is able to withstand forces up to 35 pN and has an initial lifetime of 0.27 s and an intermolecular length of interaction of 0.34 nm. The initial bond also has an energy barrier of 6.7 kB T (where kB is Boltzmann's constant and T is absolute temperature). However, within 0.3 s, individual gp120-CD4 bonds undergo rapid destabilization accompanied by a shortened lifetime and a lowered tensile strength. This destabilization is significantly enhanced by the coreceptor CCR5, not by CXCR4 or fusion inhibitors, which suggests that it is directly related to a conformational change in the gp120-CD4 bond. These measurements highlight the instability and low tensile strength of gp120-receptor bonds, uncover a synergistic role for CCR5 in the progression of the gp120-CD4 bond, and suggest that the cell-virus adhesion complex is functionally arranged about a long-lived gp120-coreceptor bond.


2002 ◽  
Vol 76 (22) ◽  
pp. 11584-11595 ◽  
Author(s):  
Mathias Viard ◽  
Isabella Parolini ◽  
Massimo Sargiacomo ◽  
Katia Fecchi ◽  
Carlo Ramoni ◽  
...  

ABSTRACT In this study we examined the effects of target membrane cholesterol depletion and cytoskeletal changes on human immunodeficiency virus type 1 (HIV-1) Env-mediated membrane fusion by dye redistribution assays. We found that treatment of peripheral blood lymphocytes (PBL) with methyl-β-cyclodextrin (MβCD) or cytochalasin reduced their susceptibility to membrane fusion with cells expressing HIV-1 Env that utilize CXCR4 or CCR5. However, treatment of human osteosarcoma (HOS) cells expressing high levels of CD4 and coreceptors with these agents did not affect their susceptibility to HIV-1 Env-mediated membrane fusion. Removal of cholesterol inhibited stromal cell-derived factor-1α- and macrophage inflammatory protein 1β-induced chemotaxis of both PBL and HOS cells expressing CD4 and coreceptors. The fusion activity as well as the chemotactic activity of PBL was recovered by adding back cholesterol to these cells. Confocal laser scanning microscopy analysis indicated that treatment of lymphocytes with MβCD reduced the colocalization of CD4 or of CXCR4 with actin presumably in microvilli. These findings indicate that, although cholesterol is not required for HIV-1 Env-mediated membrane fusion per se, its depletion from cells with relatively low coreceptor densities reduces the capacity of HIV-1 Env to engage coreceptor clusters required to trigger fusion. Furthermore, our results suggest that coreceptor clustering may occur in microvilli that are supported by actin polymerization.


1999 ◽  
Vol 73 (2) ◽  
pp. 887-896 ◽  
Author(s):  
Ulrich Schubert ◽  
Stephan Bour ◽  
Ronald L. Willey ◽  
Klaus Strebel

ABSTRACT The human immunodeficiency virus type 1 (HIV-1) Vpu and Env proteins are expressed from a bicistronic mRNA. To address the biological significance of the coordinated expression ofvpu and env, we compared the relative effects on particle release of HIV-1 isolates containing an intactvpu gene or carrying point mutations in its initiation codon or internal deletions, respectively. We found that the primary AD8 isolate, which is unable to express vpu due to a mutation in its translation initiation codon, was able to replicate in primary macrophages and peripheral blood mononuclear cells with efficiency similar to that of an isogenic variant expressing Vpu. Interestingly, AD8 lacking a vpu initiation codon produced higher levels of Env protein than its Vpu-expressing isogenic variant. In contrast, disabling Vpu without removing the vpuinitiation codon did not alter Env expression but significantly reduced virus production. AD8 Env when provided in trans was capable of enhancing release not only of AD8 particles but also of viruses of the T-cell-tropic NL4-3 isolate. We conclude that AD8 Env encodes a Vpu-like activity similar to that previously reported for HIV-2 Env proteins and is thus able to augment virus secretion. When expressed at elevated levels, i.e., following mutation of thevpu initiation codon, AD8 Env was able to compensate for the lack of Vpu and thereby ensure efficient virus release. Thus, the ability to regulate virus release is redundant in AD8 and can be controlled by either Vpu or Env. Since Vpu controls several independent functions, including CD4 degradation, our results suggest that some HIV-1 isolates may have evolved a mechanism to regulate Vpu activity without compromising their ability to efficiently replicate in the host cells.


2005 ◽  
Vol 49 (8) ◽  
pp. 3474-3482 ◽  
Author(s):  
Katsunori Takashima ◽  
Hiroshi Miyake ◽  
Naoyuki Kanzaki ◽  
Yoshihiko Tagawa ◽  
Xin Wang ◽  
...  

ABSTRACT TAK-220 is a member of a novel class of chemokine receptor antagonists and is highly specific to CCR5, as determined by receptor binding and calcium mobilization assays. The compound selectively inhibited coreceptor-mediated entry of human immunodeficiency virus type 1 (HIV-1) into host cells and HIV-1 infection mediated by CCR5. TAK-220 inhibited the replication of six CCR5-using (R5) HIV-1 clinical isolates in peripheral blood mononuclear cells (PBMCs) with a mean 90% effective concentration of 13 nM. The anti-HIV-1 activity of TAK-220 was not affected by addition of high concentrations of human serum. It equally inhibited R5 HIV-1 replication in PBMCs obtained from eight different donors, irrespective of the levels of viral production. Furthermore, the anti-HIV-1 activity of TAK-220 was found to be subtype independent. TAK-220 did not induce CCR5 internalization but blocked the binding of two monoclonal antibodies that recognize the second extracellular loop of CCR5 in CCR5-expressing cells. These results suggest that TAK-220 selectively inhibits R5 HIV-1 replication by interfering with coreceptor-mediated entry of the virus into host cells. At a dose of 5 mg/kg of body weight, TAK-220 showed oral bioavailabilities of 9.5 and 28.9% in rats and monkeys, respectively. Thus, TAK-220 is a promising candidate for the treatment of HIV-1 infection.


Marine Drugs ◽  
2019 ◽  
Vol 17 (9) ◽  
pp. 495
Author(s):  
Mai Izumida ◽  
Koushirou Suga ◽  
Fumito Ishibashi ◽  
Yoshinao Kubo

In this study, we aimed to find chemicals from lower sea animals with defensive effects against human immunodeficiency virus type 1 (HIV-1). A library of marine natural products consisting of 80 compounds was screened for activity against HIV-1 infection using a luciferase-encoding HIV-1 vector. We identified five compounds that decreased luciferase activity in the vector-inoculated cells. In particular, portimine, isolated from the benthic dinoflagellate Vulcanodinium rugosum, exhibited significant anti-HIV-1 activity. Portimine inhibited viral infection with an 50% inhibitory concentration (IC50) value of 4.1 nM and had no cytotoxic effect on the host cells at concentrations less than 200 nM. Portimine also inhibited vesicular stomatitis virus glycoprotein (VSV-G)-pseudotyped HIV-1 vector infection. This result suggested that portimine mainly targeted HIV-1 Gag or Pol protein. To analyse which replication steps portimine affects, luciferase sequences were amplified by semi-quantitative PCR in total DNA. This analysis revealed that portimine inhibits HIV-1 vector infection before or at the reverse transcription step. Portimine has also been shown to have a direct effect on reverse transcriptase using an in vitro reverse transcriptase assay. Portimine efficiently inhibited HIV-1 replication and is a potent lead compound for developing novel therapeutic drugs against HIV-1-induced diseases.


1998 ◽  
Vol 42 (3) ◽  
pp. 487-494 ◽  
Author(s):  
Jim A. Turpin ◽  
Robert W. Buckheit ◽  
David Derse ◽  
Melinda Hollingshead ◽  
Karen Williamson ◽  
...  

ABSTRACT Nanomolar concentrations of temacrazine (1,4-bis[3-(6-oxo-6H-v-triazolo[4,5,1-de]acridin-5-yl)amino-propyl]piperazine) were discovered to inhibit acute human immunodeficiency virus type 1 (HIV-1) infections and suppress the production of virus from chronically and latently infected cells containing integrated proviral DNA. This bistriazoloacridone derivative exerted its mechanism of antiviral action through selective inhibition of HIV-1 transcription during the postintegrative phase of virus replication. Mechanistic studies revealed that temacrazine blocked HIV-1 RNA formation without interference with the transcription of cellular genes or with events associated with the HIV-1 Tat and Rev regulatory proteins. Although temacrazine inhibited the in vitro 3′ processing and strand transfer activities of HIV-1 integrase, with a 50% inhibitory concentration of approximately 50 nM, no evidence of an inhibitory effect on the intracellular integration of proviral DNA into the cellular genome during the early phase of infection could be detected. Furthermore, temacrazine did not interfere with virus attachment or fusion to host cells or the enzymatic activities of HIV-1 reverse transcriptase or protease, and the compound was not directly virucidal. Demonstration of in vivo anti-HIV-1 activity by temacrazine identifies bistriazoloacridones as a new class of pharmaceuticals that selectively blocks HIV-1 transcription.


2008 ◽  
Vol 82 (18) ◽  
pp. 9154-9163 ◽  
Author(s):  
Yan Zhou ◽  
Lin Shen ◽  
Hung-Chih Yang ◽  
Robert F. Siliciano

ABSTRACT CD4+ T-cell depletion is the hallmark of AIDS pathogenesis. Multiple mechanisms may contribute to the death of productively infected CD4+ T cells and innocent-bystander cells. In this study, we characterize a novel mechanism in which human immunodeficiency virus type 1 (HIV-1) infection preferentially depletes peripheral memory CD4+ T cells before the completion of reverse transcription. Using a recombinant HIV-1 carrying the green fluorescent protein reporter gene, we demonstrate that memory CD4+ T cells were susceptible to infection-induced cell death at a low multiplicity of infection. Infected memory CD4+ T cells underwent rapid necrotic cell death. Killing of host cells was dependent on X4 envelope-mediated viral fusion, but not on virion-associated Vpr or Nef. In contrast to peripheral resting CD4+ T cells, CD4+ T cells stimulated by mitogen or certain cytokines were resistant to HIV-1-induced early cell death. These results demonstrate that early steps in HIV-1 infection have a detrimental effect on certain subsets of CD4+ T cells. The early cell death may serve as a selective disadvantage for X4-tropic HIV-1 in acute infection but may play a role in accelerated disease progression, which is associated with the emergence of X4-tropic HIV-1 in the late stage of AIDS.


2009 ◽  
Vol 54 (1) ◽  
pp. 134-142 ◽  
Author(s):  
Thierry Huet ◽  
Olivier Kerbarh ◽  
Dominique Schols ◽  
Pascal Clayette ◽  
Cécile Gauchet ◽  
...  

ABSTRACT Enfuvirtide (also known as Fuzeon, T-20, or DP-178) is an antiretroviral fusion inhibitor which prevents human immunodeficiency virus type 1 (HIV-1) from entering host cells. This linear 36-mer synthetic peptide is indicated, in combination with other antiretroviral agents, for the treatment of HIV-1-infected individuals and AIDS patients with multidrug-resistant HIV infections. Although enfuvirtide is an efficient anti-HIV-1 drug, its clinical use is limited by a short plasma half-life, i.e., approximately 2 h, which requires twice-daily subcutaneous injections, often resulting in skin sensitivity reaction side effects at the injection sites. Ultimately, 80% of patients stop enfuvirtide treatment within 6 months because of these side effects. We report on the development of long-lasting enfuvirtide conjugates by the use of the site-specific conjugation of enfuvirtide to an antithrombin-binding carrier pentasaccharide (CP) through polyethylene glycol (PEG) linkers of various lengths. These conjugates showed consistent and broad anti-HIV-1 activity in the nanomolar range. The coupling of the CP to enfuvirtide only moderately affected the in vitro anti-HIV-1 activity in the presence of antithrombin. Most importantly, one of these conjugates, enfuvirtide-PEG12-CP (EP40111), exhibited a prolonged elimination half-life of more than 10 h in rat plasma compared to the half-life of native enfuvirtide, which was 2.8 h. On the basis of the pharmacokinetic properties of antithrombin-binding pentasaccharides, the anticipated half-life of EP40111 in humans would putatively be about 120 h, which would allow subcutaneous injection once a week instead of twice daily. In conclusion, EP40111 is a promising compound with strong potency as a novel long-lasting anti-HIV-1 drug.


2001 ◽  
Vol 14 (4) ◽  
pp. 753-777 ◽  
Author(s):  
Stephen D. Lawn ◽  
Salvatore T. Butera ◽  
Thomas M. Folks

SUMMARY The life cycle of human immunodeficiency virus type 1 (HIV-1) is intricately related to the activation state of the host cells supporting viral replication. Although cellular activation is essential to mount an effective host immune response to invading pathogens, paradoxically the marked systemic immune activation that accompanies HIV-1 infection in vivo may play an important role in sustaining phenomenal rates of HIV-1 replication in infected persons. Moreover, by inducing CD4+ cell loss by apoptosis, immune activation may further be central to the increased rate of CD4+ cell turnover and eventual development of CD4+ lymphocytopenia. In addition to HIV-1-induced immune activation, exogenous immune stimuli such as opportunistic infections may further impact the rate of HIV-1 replication systemically or at localized anatomical sites. Such stimuli may also lead to genotypic and phenotypic changes in the virus pool. Together, these various immunological effects on the biology of HIV-1 may potentially enhance disease progression in HIV-infected persons and may ultimately outweigh the beneficial aspects of antiviral immune responses. This may be particularly important for those living in developing countries, where there is little or no access to antiretroviral drugs and where frequent exposure to pathogenic organisms sustains a chronically heightened state of immune activation. Moreover, immune activation associated with sexually transmitted diseases, chorioamnionitis, and mastitis may have important local effects on HIV-1 replication that may increase the risk of sexual or mother-to-child transmission of HIV-1. The aim of this paper is to provide a broad review of the interrelationship between immune activation and the immunopathogenesis, transmission, progression, and treatment of HIV-1 infection in vivo.


Sign in / Sign up

Export Citation Format

Share Document