virus release
Recently Published Documents


TOTAL DOCUMENTS

216
(FIVE YEARS 7)

H-INDEX

48
(FIVE YEARS 0)

2021 ◽  
Vol 17 (12) ◽  
pp. e1010098
Author(s):  
Fangtao Li ◽  
Jiyu Liu ◽  
Jizhe Yang ◽  
Haoran Sun ◽  
Zhimin Jiang ◽  
...  

H5N6 highly pathogenic avian influenza virus (HPAIV) clade 2.3.4.4 not only exhibits unprecedented intercontinental spread in poultry, but can also cause serious infection in humans, posing a public health threat. Phylogenetic analyses show that 40% (8/20) of H5N6 viruses that infected humans carried H9N2 virus-derived internal genes. However, the precise contribution of H9N2 virus-derived internal genes to H5N6 virus infection in humans is unclear. Here, we report on the functional contribution of the H9N2 virus-derived matrix protein 1 (M1) to enhanced H5N6 virus replication capacity in mammalian cells. Unlike H5N1 virus-derived M1 protein, H9N2 virus-derived M1 protein showed high binding affinity for H5N6 hemagglutinin (HA) protein and increased viral progeny particle release in different mammalian cell lines. Human host factor, G protein subunit beta 1 (GNB1), exhibited strong binding to H9N2 virus-derived M1 protein to facilitate M1 transport to budding sites at the cell membrane. GNB1 knockdown inhibited the interaction between H9N2 virus-derived M1 and HA protein, and reduced influenza virus-like particles (VLPs) release. Our findings indicate that H9N2 virus-derived M1 protein promotes avian H5N6 influenza virus release from mammalian, in particular human cells, which could be a major viral factor for H5N6 virus cross-species infection.



Viruses ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1989
Author(s):  
Sabine Nitschel ◽  
Luca M. Zaeck ◽  
Madlin Potratz ◽  
Tobias Nolden ◽  
Verena te Kamp ◽  
...  

Molecular details of field rabies virus (RABV) adaptation to cell culture replication are insufficiently understood. A better understanding of adaptation may not only reveal requirements for efficient RABV replication in cell lines, but may also provide novel insights into RABV biology and adaptation-related loss of virulence and pathogenicity. Using two recombinant field rabies virus clones (rRABV Dog and rRABV Fox), we performed virus passages in three different cell lines to identify cell culture adaptive mutations. Ten passages were sufficient for the acquisition of adaptive mutations in the glycoprotein G and in the C-terminus of phosphoprotein P. Apart from the insertion of a glycosylation sequon via the mutation D247N in either virus, both acquired additional and cell line-specific mutations after passages on BHK (K425N) and MDCK-II (R346S or R350G) cells. As determined by virus replication kinetics, complementation, and immunofluorescence analysis, the major bottleneck in cell culture replication was the intracellular accumulation of field virus G protein, which was overcome after the acquisition of the adaptive mutations. Our data indicate that limited release of extracellular infectious virus at the plasma membrane is a defined characteristic of highly virulent field rabies viruses and we hypothesize that the observed suboptimal release of infectious virions is due to the inverse correlation of virus release and virulence in vivo.



2021 ◽  
Author(s):  
Tomozumi Imamichi ◽  
John G. Bernbaum ◽  
Sylvain Laverdure ◽  
Jun Yang ◽  
Qian Chen ◽  
...  

Recently, a genome-wide association study using plasma HIV RNA from antiretroviral therapy naïve patients reported that 14 naturally occurring non-synonymous single nucleotide polymorphisms (SNPs) in HIV derived from anti-retrovirus drugs naïve patients were associated with virus load (VL). Those SNPs were detected in reverse transcriptase, RNase H, integrase, envelope, and Nef. However, the impact of each mutation on viral fitness was not investigated. Here, we constructed a series of HIV variants encoding each SNP and examined their replicative abilities. An HIV variant containing Met-to-Ile change at codon 50 in integrase (HIV(IN:M50I)) was found as an impaired virus. Despite the mutation being in integrase, the virus release was significantly suppressed (P<0.001). Transmission electron microscopy analysis revealed that abnormal bud accumulation on the plasma membrane and the released virus particles retained immature forms. Western blot analysis demonstrated a defect in autoprocessing of GagPol and Gag polyproteins' autoprocessing in the HIV(IN:M50I) particles, although Förster Resonance Energy Transfer (FRET) assay displayed that GagPol containing IN:M50I forms homodimer with a similar efficiency with GagPol (WT). The impaired maturation and replication were rescued by two other VL-associated SNPs, Ser-to-Asn change at codon 17 of integrase or Asn-to-Ser change at codon 79 of RNase H. These data demonstrate that Gag and GagPol assembly, virus release, and autoprocessing are not only regulated by integrase but also RNase H. Importance A nascent HIV-1 is a noninfectious viral particle. Cleaving Gag and GagPol polyproteins in the particle by mature HIV protease (PR), the nascent virus becomes an infectious virus. PR is initially translated as an inactive embedded enzyme in a GagPol polyprotein. The embedded PR in homodimerized GagPol polyproteins catalyzes a proteolytic reaction to release the mature PR. This excision step by a self-cleavage is called autoprocessing. Here, during the evaluation of the roles of naturally emerging non-synonymous SNPs in HIV RNA, we found that autoprocessing is inhibited by Met-to-Ile change at codon 50 in integrase GagPol. Co-existing other SNPs, Ser-to-Asn change at codon 17 in integrase or Asn-to-Ser mutation at codon 79 in RNase H, recovered this defect, suggesting that autoprocessing is regulated by not only integrase but also RNase H in GagPol polyprotein.



2021 ◽  
Vol 31 (5) ◽  
pp. 667-669
Author(s):  
Andrei G. Malykh ◽  
Andrey R. Pavlov ◽  
Alexander V. Komkov ◽  
Yulia A. Volkova ◽  
Leonid G. Menchikov ◽  
...  


2021 ◽  
Author(s):  
Laura Liao

In this work, two studies were performed where mathematical models (MM) were used to re-examine and refine quantitative methods based on in vitro assays of influenza A virus infections. In the first study, we investigated the standard experimental method for counting defective interfering particles (DIPs) based on the reduction in standard virus (STV) yield (Bellett & Cooper, 1959). We found the method is valid for counting DIPs provided that: (1) a STV-infected cell’s co-infection window is approximately half its eclipse phase (it blocks infection by other virions before it begins producing progeny virions); (2) a cell co-infected by STV and DIP produces less than 1 STV per 1,000 DIPs; and (3) a high MOI of STV stock (>4 plaque-forming units/cell) is added to perform the assay. Prior work makes no mention of these criteria such that the counting method has been applied incorrectly in several publications discussed herein. We determined influenza A virus meets these criteria, making the method suitable for counting influenza A DIPs. In the second study, we compared a MM with an explicit representation of viral release to a simple MM without explicit release, and investigated whether parameter estimation and the estimation of neuraminidase inhibitor (NAI) efficacy were affected by the use of a simple MM. Since the release rate of influenza A virus is not well-known, a broad range of release rates were considered. If the virus release rate is greater than ∼0.1 h−1, the simple MM provides accurate estimates of infection parameters, but underestimates NAI efficacy, which could lead to underdosing and the emergence of NAI resistance. In contrast, when release is slower than ∼0.1 h−1, the simple MM accurately estimates NAI efficacy, but it can significantly overestimate the infectious lifespan (i.e., the time a cell remains infectious and producing free virus), and it will significantly underestimate the total virus yield and thus the likelihood of resistance emergence. We discuss the properties of, and a possible lower bound for, the influenza A virus release rate. Overall, MMs are a valuable tool in the exploration of the known unknowns (i.e., DIPs, virus release) of influenza A virus infection.



2021 ◽  
Author(s):  
Laura Liao

In this work, two studies were performed where mathematical models (MM) were used to re-examine and refine quantitative methods based on in vitro assays of influenza A virus infections. In the first study, we investigated the standard experimental method for counting defective interfering particles (DIPs) based on the reduction in standard virus (STV) yield (Bellett & Cooper, 1959). We found the method is valid for counting DIPs provided that: (1) a STV-infected cell’s co-infection window is approximately half its eclipse phase (it blocks infection by other virions before it begins producing progeny virions); (2) a cell co-infected by STV and DIP produces less than 1 STV per 1,000 DIPs; and (3) a high MOI of STV stock (>4 plaque-forming units/cell) is added to perform the assay. Prior work makes no mention of these criteria such that the counting method has been applied incorrectly in several publications discussed herein. We determined influenza A virus meets these criteria, making the method suitable for counting influenza A DIPs. In the second study, we compared a MM with an explicit representation of viral release to a simple MM without explicit release, and investigated whether parameter estimation and the estimation of neuraminidase inhibitor (NAI) efficacy were affected by the use of a simple MM. Since the release rate of influenza A virus is not well-known, a broad range of release rates were considered. If the virus release rate is greater than ∼0.1 h−1, the simple MM provides accurate estimates of infection parameters, but underestimates NAI efficacy, which could lead to underdosing and the emergence of NAI resistance. In contrast, when release is slower than ∼0.1 h−1, the simple MM accurately estimates NAI efficacy, but it can significantly overestimate the infectious lifespan (i.e., the time a cell remains infectious and producing free virus), and it will significantly underestimate the total virus yield and thus the likelihood of resistance emergence. We discuss the properties of, and a possible lower bound for, the influenza A virus release rate. Overall, MMs are a valuable tool in the exploration of the known unknowns (i.e., DIPs, virus release) of influenza A virus infection.



2021 ◽  
Author(s):  
Tomozumi Imamichi ◽  
John G. Bernbaum ◽  
Sylvain Laverdure ◽  
Jun Yang ◽  
Qian Chen ◽  
...  

AbstractRecently, a genome-wide association study using plasma HIV RNA reported that 14 naturally occurring non-synonymous single nucleotide polymorphisms (SNPs) in HIV derived from anti-retrovirus naïve patients were associated with virus load (VL). However, the impact of each mutation on viral fitness was not investigated. Here, we constructed a series of HIV variants encoding each SNP using site-directed mutagenesis and examined their replicative abilities and biological properties. An HIV variant containing Met-to-Ile change at codon 50 in integrase (HIV(IN:M50I)) was found an impaired virus. Despite the mutation being in integrase, a quantification assay demonstrated that the virus release was significantly suppressed (P<0.001). Transmission electron microscopy analyses revealed that the accumulation of abnormal shapes of buds on the plasma membrane and the released virus particles retained immature forms. Western blot analysis demonstrated a defect in autoprocessing of GagPol and Gag polyproteins in the HIV(IN:M50I) particles. Förster Resonance Energy Transfer (FRET) assay displayed that GagPol containing IN:M50I (GagPol(IN:M50I)) significantly increased the efficiency of homodimerization (P<0.05) and heterodimerization with Gag (P<0.001), compared to GagPol(WT). HIV replication assay using a series of variants of HIV(IN:M50I) elucidated that the C-terminus residues, Asn at codon 288, plays a key role in the defect and the impaired maturation and replication capability was rescued by two other VL-associated SNPs, Ser-to-Asn change at codon 17 in integrase or Asn-to-Ser change at codon 79 in RNase H. These data demonstrate that Gag and GagPol assembly, virus release and autoprocessing are not only regulated by integrase but also RNase H.ImportanceA nascent HIV-1 is noninfectious. To become an infectious virus, Gag and GagPol polyproteins in the particles need to be cleaved by mature HIV protease (PR). PR is initially translated as an inactive embedded enzyme in a GagPol polyprotein. The embedded PR in homodimerized GagPol polyproteins catalyzes a proteolytic reaction to release the mature PR. This excision step by a self-cleavage is called autoprocessing. Here, during the evaluation of roles of naturally emerging non-synonymous SNPs in HIV RNA, we found that autoprocessing is inhibited by Met-to-Ile change at codon 50 in integrase in GagPol which increases the efficiency of heterodimerization with Gag. This defect was recovered by co-existing of other SNPs: Ser-to-Asn change at codon 17 in integrase or Asn-to-Ser mutation at codon 79 in RNase H, suggesting that autoprocessing is regulated by not only integrase but also RNase H in GagPol polyprotein.



2020 ◽  
pp. JVI.02346-20
Author(s):  
Patrick König ◽  
Adriana Svrlanska ◽  
Clarissa Read ◽  
Sabine Feichtinger ◽  
Thomas Stamminger

Autophagy is a catabolic process contributing to intrinsic cellular defense by degrading viral particles or proteins, however, several viruses hijack this pathway for their own benefit. The role of autophagy during human cytomegalovirus (HCMV) replication has not been definitely clarified yet. Utilizing siRNA-based screening, we observed that depletion of many autophagy-related proteins resulted in reduced virus release suggesting a requirement of autophagy-related factors for efficient HCMV replication. Additionally, we could show that the autophagy-initiating serine/threonine-protein kinase ULK1 as well as other constituents of the ULK1 complex were upregulated at early times of infection and stayed upregulated throughout the replication cycle. We demonstrate that an indirect interference with ULK1 through inhibition of the upstream regulator AMPK impaired virus release. Furthermore, this result was verified by direct abrogation of ULK1 kinase activity utilizing the ULK1-specific kinase inhibitors SBI-0206965 and ULK-101. Analysis of viral protein expression in the presence of ULK-101 revealed a connection between the cellular kinase ULK1 and the viral tegument protein pp28 (pUL99) and we identified pp28 as a novel viral substrate of ULK1 by in vitro kinase assays. In the absence of ULK1 kinase activity, large pp28- and pp65-positive structures could be detected in the cytoplasm at late time points of infection. Transmission electron microscopy demonstrated that these structures represent large perinuclear protein accumulations presumably representing aggresomes. Our results indicate that HCMV manipulates ULK1 and further components of the autophagic machinery to ensure efficient release of viral particles.IMPORTANCE The catabolic program of autophagy represents a powerful immune defense against viruses that is, however, counteracted by antagonizing viral factors. Understanding the exact interplay between autophagy and HCMV infection is of major importance since autophagy-related proteins emerged as promising targets for pharmacologic intervention. Our study provides evidence for a proviral role of several autophagy-related proteins suggesting that HCMV has developed strategies to usurp components of the autophagic machinery for its own benefit. In particular, we observed a strong upregulation of the autophagy-initiating protein kinase ULK1 and further components of the ULK1 complex during HCMV replication. In addition, both siRNA-mediated depletion of ULK1 and interference with ULK1 protein kinase activity by two chemically different inhibitors resulted in impaired viral particle release. Thus, we propose that ULK1 kinase activity is required for efficient HCMV replication and thus represents a promising novel target for future antiviral drug development.



2020 ◽  
Author(s):  
Huanzhou Xu ◽  
Siddhi A. Chitre ◽  
Ibukun A. Akinyemi ◽  
Julia C. Loeb ◽  
John A. Lednicky ◽  
...  

AbstractCytokine storm resulting from a heightened inflammatory response is a prominent feature of severe COVID-19 disease. This inflammatory response results from assembly/activation of a cell-intrinsic defense platform known as the inflammasome. We report that the SARS-CoV-2 viroporin encoded by ORF3a activates the NLRP3 inflammasome, the most promiscuous of known inflammasomes. ORF3a triggers IL-1β expression via NFκB, thus priming the inflammasome while also activating it via ASC-dependent and -independent modes. ORF3a-mediated inflammasome activation requires efflux of potassium ions and oligomerization between NEK7 and NLRP3. With the selective NLRP3 inhibitor MCC950 able to block ORF3a-mediated inflammasome activation and key ORF3a residues needed for virus release and inflammasome activation conserved in SARS-CoV-2 isolates across continents, ORF3a and NLRP3 present prime targets for intervention.SummaryDevelopment of anti-SARS-CoV-2 therapies is aimed predominantly at blocking infection or halting virus replication. Yet, the inflammatory response is a significant contributor towards disease, especially in those severely affected. In a pared-down system, we investigate the influence of ORF3a, an essential SARS-CoV-2 protein, on the inflammatory machinery and find that it activates NLRP3, the most prominent inflammasome by causing potassium loss across the cell membrane. We also define key amino acid residues on ORF3a needed to activate the inflammatory response, and likely to facilitate virus release, and find that they are conserved in virus isolates across continents. These findings reveal ORF3a and NLRP3 to be attractive targets for therapy.



Viruses ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 1128
Author(s):  
Nasim Motamedi ◽  
Xaver Sewald ◽  
Yong Luo ◽  
Walther Mothes ◽  
Daniel DiMaio

Polyomaviruses are a family of small, non-enveloped DNA viruses that can cause severe disease in immunosuppressed individuals. Studies with SV40, a well-studied model polyomavirus, have revealed the role of host proteins in polyomavirus entry and trafficking to the nucleus, in viral transcription and DNA replication, and in cell transformation. In contrast, little is known about host factors or cellular signaling pathways involved in the late steps of productive infection leading to release of progeny polyomaviruses. We previously showed that cytoplasmic vacuolization, a characteristic late cytopathic effect of SV40 infection, depends on the specific interaction between the major viral capsid protein VP1 and its cell surface ganglioside receptor GM1. Here, we show that, late during infection, SV40 activates a signaling cascade in permissive monkey CV-1 cells involving Ras, Rac1, MKK4, and JNK to stimulate SV40-specific cytoplasmic vacuolization and subsequent cell lysis and virus release. Inhibition of individual components of this signaling pathway inhibits vacuolization, lysis, and virus release, even though high-level intracellular virus replication occurs. Identification of this pathway for SV40-induced vacuolization and virus release provides new insights into the late steps of non-enveloped virus infection.



Sign in / Sign up

Export Citation Format

Share Document