Myelokathexis, a congenital disorder of severe neutropenia characterized by accelerated apoptosis and defective expression ofbcl-x in neutrophil precursors

Blood ◽  
2000 ◽  
Vol 95 (1) ◽  
pp. 320-327 ◽  
Author(s):  
Andrew A. G. Aprikyan ◽  
W. Conrad Liles ◽  
Julie R. Park ◽  
Mechthild Jonas ◽  
Emil Y. Chi ◽  
...  

Myelokathexis is a congenital disorder that causes severe chronic leukopenia and neutropenia. Characteristic findings include degenerative changes and hypersegmentation of mature neutrophils and hyperplasia of bone marrow myeloid cells. The associated neutropenia can be partially corrected by treatment with granulocyte colony-stimulating factor (G-CSF) or granulocyte–macrophage colony-stimulating factor (GM-CSF). These features led us to propose that accelerated apoptosis of neutrophil precursors might account for the neutropenic phenotype. Blood and bone marrow aspirates were obtained from 4 patients (2 unrelated families) with myelokathexis before G-CSF therapy and from 2 of the affected persons after G-CSF therapy (1 μg/kg per day subcutaneously for 3 weeks). Bone marrow was fractionated using immunomagnetic bead cell sorting into CD34+, CD33+/CD34−, and CD15+/CD34−/CD33− cell populations. Examination of these cells by flow cytometry and electron microscopy revealed abundant apoptosis in the CD15+ neutrophil precursor population, characterized by enhanced annexin-V binding, extensive membrane blebbing, condensation of heterochromatin, and cell fragmentation. Colony-forming assays demonstrated significant reduction in a proportion of bone marrow myeloid-committed progenitor cells. Immunohistochemical analysis revealed a selective decrease inbcl-x, but not bcl-2, expression in the CD15+/CD34−/CD33− cell population compared with similar subpopulations of control bone marrow-derived myeloid precursors. After G-CSF therapy, apoptotic features of patients' bone marrow cells were substantially reduced, and the absolute neutrophil counts (ANC) and expression ofbcl-x in CD15+/CD34−/CD33−cells increased. The authors concluded that myelokathexis is a disease characterized by the accelerated apoptosis of granulocytes and the depressed expression of bcl-x in bone marrow-derived granulocyte precursor cells. These abnormalities are partially corrected by the in vivo administration of G-CSF. (Blood. 2000;95:320-327)

Blood ◽  
2000 ◽  
Vol 95 (1) ◽  
pp. 320-327 ◽  
Author(s):  
Andrew A. G. Aprikyan ◽  
W. Conrad Liles ◽  
Julie R. Park ◽  
Mechthild Jonas ◽  
Emil Y. Chi ◽  
...  

Abstract Myelokathexis is a congenital disorder that causes severe chronic leukopenia and neutropenia. Characteristic findings include degenerative changes and hypersegmentation of mature neutrophils and hyperplasia of bone marrow myeloid cells. The associated neutropenia can be partially corrected by treatment with granulocyte colony-stimulating factor (G-CSF) or granulocyte–macrophage colony-stimulating factor (GM-CSF). These features led us to propose that accelerated apoptosis of neutrophil precursors might account for the neutropenic phenotype. Blood and bone marrow aspirates were obtained from 4 patients (2 unrelated families) with myelokathexis before G-CSF therapy and from 2 of the affected persons after G-CSF therapy (1 μg/kg per day subcutaneously for 3 weeks). Bone marrow was fractionated using immunomagnetic bead cell sorting into CD34+, CD33+/CD34−, and CD15+/CD34−/CD33− cell populations. Examination of these cells by flow cytometry and electron microscopy revealed abundant apoptosis in the CD15+ neutrophil precursor population, characterized by enhanced annexin-V binding, extensive membrane blebbing, condensation of heterochromatin, and cell fragmentation. Colony-forming assays demonstrated significant reduction in a proportion of bone marrow myeloid-committed progenitor cells. Immunohistochemical analysis revealed a selective decrease inbcl-x, but not bcl-2, expression in the CD15+/CD34−/CD33− cell population compared with similar subpopulations of control bone marrow-derived myeloid precursors. After G-CSF therapy, apoptotic features of patients' bone marrow cells were substantially reduced, and the absolute neutrophil counts (ANC) and expression ofbcl-x in CD15+/CD34−/CD33−cells increased. The authors concluded that myelokathexis is a disease characterized by the accelerated apoptosis of granulocytes and the depressed expression of bcl-x in bone marrow-derived granulocyte precursor cells. These abnormalities are partially corrected by the in vivo administration of G-CSF. (Blood. 2000;95:320-327)


Blood ◽  
1982 ◽  
Vol 59 (2) ◽  
pp. 408-420 ◽  
Author(s):  
G Pigoli ◽  
A Waheed ◽  
RK Shadduck

Abstract Radioiodinated L-cell-derived colony-stimulating factor (CSF) was used to characterize the binding reaction to murine bone marrow cells. The major increment in cell-associated radioactivity occurred over 24 hr incubation at 37 degrees C, but virtually no binding was observed at 4 degrees C. The reaction was saturable with approximately 1 ng/ml of purified CSF. Unlabeled CSF prevented the binding, whereas a number of other hormones and proteins did not compete for CSF uptake. Further specificity studies showed virtually no binding to human bone marrow, which is unresponsive to this form of murine CSF. Minimal CSF uptake was noted with murine peritoneal macrophages, but virtually no binding was detected with thymic, lymph node, liver, or kidney cells. The marrow cell interaction with tracer appeared to require a new protein synthesis, as the binding was prevented by cycloheximide or puromycin. Preincubation of marrow cells in medium devoid of CSF increased the degree of binding after 1 hr exposure to the tracer. This suggests that CSF binding sites may be occupied or perhaps decreased in response to ambient levels of CSF in vivo. Approximately 70% of the bound radioactivity was detected in the cytoplasm at 24 hr. This material was partially degraded as judged by a decrease in molecular weight from approximately 62,000 to 2 peaks of approximately 32,000 and approximately 49,000, but 72% of the binding activity was retained. After plateau binding was achieved, greater than 80% of the radioactivity released into the medium was degraded into biologically inactive peptides with molecular weights less than 10,000. These findings suggest that the interaction of CSF with marrow cells is characterized by binding with subsequent internalization and metabolic degradation into portions of the molecule that are devoid of biologic activity.


Blood ◽  
1991 ◽  
Vol 77 (9) ◽  
pp. 1923-1928 ◽  
Author(s):  
BD Chen

Abstract Earlier studies suggested the existence of a blood-bone marrow barrier that significantly inhibits the transfer of plasma macrophage colony- stimulating factor (M-CSF) to responsive hematopoietic cells in vivo as indicated by its failure to induce a receptor downregulation in bone marrow cells. In this study, the effect of recombinant human interleukin-1 (rhuIL-1) was investigated. In vivo administration of rhuIL-1, either intraperitoneally (IP) or intravenously (IV), induced a rapid transient loss of M-CSF receptor binding activity in bone marrow cells, with a nadir occurring between 2 to 4 hours while loss of M-CSF receptors by cells in the peritoneal cavity occurred only in animals receiving rhuIL-1 via IP administration. The loss of M-CSF receptor activity after rhuIL-1 treatment was correlated with an elevated level of circulating M-CSF. However, the loss of M-CSF receptors in marrow cells was prevented by dexamethasone (Dex) treatment before rhuIL-1 administration. The fact that Dex treatment also reduced the level of circulating M-CSF after rhuIL-1 administration suggests that the inhibitory effects of IL-1 are mediated through locally produced M-CSF. Administration of rhuM-CSF at higher doses, either IV or IP, also induced a loss of M-CSF receptor of lesser degree in the marrow cells. However, the loss of M-CSF receptors by the peritoneal cells was induced only in mice receiving rhuM-CSF through IP administration. Taken together, these results indicate the existence of a unidirectional barrier that prevents the transfer of blood M-CSF and IL- 1 to peritoneal cavity but not vice versa.


Blood ◽  
1991 ◽  
Vol 77 (9) ◽  
pp. 1923-1928
Author(s):  
BD Chen

Earlier studies suggested the existence of a blood-bone marrow barrier that significantly inhibits the transfer of plasma macrophage colony- stimulating factor (M-CSF) to responsive hematopoietic cells in vivo as indicated by its failure to induce a receptor downregulation in bone marrow cells. In this study, the effect of recombinant human interleukin-1 (rhuIL-1) was investigated. In vivo administration of rhuIL-1, either intraperitoneally (IP) or intravenously (IV), induced a rapid transient loss of M-CSF receptor binding activity in bone marrow cells, with a nadir occurring between 2 to 4 hours while loss of M-CSF receptors by cells in the peritoneal cavity occurred only in animals receiving rhuIL-1 via IP administration. The loss of M-CSF receptor activity after rhuIL-1 treatment was correlated with an elevated level of circulating M-CSF. However, the loss of M-CSF receptors in marrow cells was prevented by dexamethasone (Dex) treatment before rhuIL-1 administration. The fact that Dex treatment also reduced the level of circulating M-CSF after rhuIL-1 administration suggests that the inhibitory effects of IL-1 are mediated through locally produced M-CSF. Administration of rhuM-CSF at higher doses, either IV or IP, also induced a loss of M-CSF receptor of lesser degree in the marrow cells. However, the loss of M-CSF receptors by the peritoneal cells was induced only in mice receiving rhuM-CSF through IP administration. Taken together, these results indicate the existence of a unidirectional barrier that prevents the transfer of blood M-CSF and IL- 1 to peritoneal cavity but not vice versa.


Blood ◽  
1999 ◽  
Vol 94 (3) ◽  
pp. 950-958 ◽  
Author(s):  
Feng-Chun Yang ◽  
Kohichiro Tsuji ◽  
Atsushi Oda ◽  
Yasuhiro Ebihara ◽  
Ming-jiang Xu ◽  
...  

Granulocyte-colony stimulating factor (G-CSF) has been found to act on the neutrophilic lineage. We recently showed that human G-CSF (hG-CSF) has effects similar to early-acting cytokines such as interleukin-3 (IL-3) in the development of multipotential hematopoietic progenitors in transgenic (Tg) mice expressing receptors (R) for hG-CSF. In the present study, we examined the effects of hG-CSF on more mature hematopoietic cells committed to megakaryocytic lineage in these Tg mice. The administration of hG-CSF to the Tg mice increased the numbers of both platelets in peripheral blood and megakaryocytes in the spleen, indicating that hG-CSF stimulates megakaryopoiesis in the Tg mice in vivo. The stimulatory effect of hG-CSF was also supported by the results of studies in vitro. hG-CSF supported megakaryocyte colony formation in a dose-dependent fashion in clonal cultures of bone marrow cells derived from the Tg mice. Direct effects of hG-CSF on megakaryocytic progenitors in the Tg mice were confirmed by culture of single-cell sorted from bone marrow cells. hG-CSF showed a stronger effect on maturation of megakaryocytes in the Tg mice than that of IL-3 alone, but weaker than that of TPO alone. In addition, hG-CSF induced phosphorylation of STAT3 but not Jak2 or STAT5, while TPO induced phosphorylation of both. In contrast to TPO, hG-CSF did not enhance ADP-induced aggregation. Thus, hG-CSF has a wide variety of functions in megakaryopoiesis of hG-CSFR-Tg mice, as compared with other megakaryopoietic cytokines, but the activity of hG-CSF in megakaryocytes and platelets does not stand up to a comparison with that of TPO. Specific signals may be required for the full maturation and activation of platelets.


Blood ◽  
1982 ◽  
Vol 59 (2) ◽  
pp. 408-420
Author(s):  
G Pigoli ◽  
A Waheed ◽  
RK Shadduck

Radioiodinated L-cell-derived colony-stimulating factor (CSF) was used to characterize the binding reaction to murine bone marrow cells. The major increment in cell-associated radioactivity occurred over 24 hr incubation at 37 degrees C, but virtually no binding was observed at 4 degrees C. The reaction was saturable with approximately 1 ng/ml of purified CSF. Unlabeled CSF prevented the binding, whereas a number of other hormones and proteins did not compete for CSF uptake. Further specificity studies showed virtually no binding to human bone marrow, which is unresponsive to this form of murine CSF. Minimal CSF uptake was noted with murine peritoneal macrophages, but virtually no binding was detected with thymic, lymph node, liver, or kidney cells. The marrow cell interaction with tracer appeared to require a new protein synthesis, as the binding was prevented by cycloheximide or puromycin. Preincubation of marrow cells in medium devoid of CSF increased the degree of binding after 1 hr exposure to the tracer. This suggests that CSF binding sites may be occupied or perhaps decreased in response to ambient levels of CSF in vivo. Approximately 70% of the bound radioactivity was detected in the cytoplasm at 24 hr. This material was partially degraded as judged by a decrease in molecular weight from approximately 62,000 to 2 peaks of approximately 32,000 and approximately 49,000, but 72% of the binding activity was retained. After plateau binding was achieved, greater than 80% of the radioactivity released into the medium was degraded into biologically inactive peptides with molecular weights less than 10,000. These findings suggest that the interaction of CSF with marrow cells is characterized by binding with subsequent internalization and metabolic degradation into portions of the molecule that are devoid of biologic activity.


Blood ◽  
1990 ◽  
Vol 75 (3) ◽  
pp. 563-569 ◽  
Author(s):  
G Molineux ◽  
Z Pojda ◽  
TM Dexter

Abstract Recombinant human granulocyte colony-stimulating factor (rhG-CSF) induces leukocytosis in vivo in both intact and splenectomized mice. Full dose response data showed a plateau in this effect at doses over 500 micrograms rhG-CSF/kg body weight/d in intact mice. The effect is magnified in splenectomized mice, where leukocyte numbers reach 100 x 10(6) mL after 4 days' treatment at 250 micrograms/kg/d. Further hematopoietic precursor populations are also affected in both marrow and the spleen; in general, marrow parameters were depressed, while splenic populations were enlarged. In splenectomized mice, both blood- borne stem cells were enhanced, and foci of extramedullary hematopoiesis were enlarged in addition to the effects seen in intact mice. In the marrow of splenectomized and intact mice treated with a high dose of G-CSF, erythroid suppression in the marrow was confirmed with radioactive iron. Our studies confirm and extend previous work on the mode of action of G-CSF, and indicate that side effects of high dose G-CSF therapy might include erythroid suppression in the bone marrow.


Blood ◽  
1990 ◽  
Vol 75 (12) ◽  
pp. 2286-2291 ◽  
Author(s):  
K Koike ◽  
T Nakahata ◽  
T Kubo ◽  
T Kikuchi ◽  
M Takagi ◽  
...  

We investigated the effect of interleukin-6 (IL-6) on murine megakaryocytopoiesis in a serum-free culture system. The addition of IL- 6 to a culture containing interleukin-3 (IL-3) resulted in a significant increase in the number of megakaryocyte colonies by bone marrow cells of normal mice. The megakaryocytic progenitors that survive exposure to 5-fluorouracil (5-FU) exhibited a more significant response to IL-6 and IL-3. Polyclonal anti-IL-6 antibody neutralized the stimulatory effect of IL-6 on megakaryocyte colony growth supported by IL-3. Delayed addition experiments and replating experiments of blast cell colonies showed that megakaryocytic progenitors are supported by IL-3 in the early stage of the development but require IL- 6 for their subsequent proliferation and differentiation. In addition, IL-6 increased the size of megakaryocytes in granulocyte-macrophage- megakaryocyte colonies. The combination of granulocyte colony- stimulating factor or granulocyte-macrophage colony stimulating factor with IL-3 resulted in an increase in the granulocyte-macrophage colony growth of bone marrow cells of 5-FU-treated mice or normal mice, respectively, but had little effect on the enhancement of pure and mixed megakaryocyte colony growth. These results suggest that IL-6 plays an important role in murine megakaryocytopoiesis.


2006 ◽  
Vol 26 (21) ◽  
pp. 8052-8060 ◽  
Author(s):  
Ewa Sicinska ◽  
Young-Mi Lee ◽  
Judith Gits ◽  
Hirokazu Shigematsu ◽  
Qunyan Yu ◽  
...  

ABSTRACT The proliferation of neutrophil granulocyte lineage is driven largely by granulocyte colony-stimulating factor (G-CSF) acting via the G-CSF receptors. In this study, we show that mice lacking cyclin D3, a component of the core cell cycle machinery, are refractory to stimulation by the G-CSF. Consequently, cyclin D3-null mice display deficient maturation of granulocytes in the bone marrow and have reduced levels of neutrophil granulocytes in their peripheral blood. The mutant mice are unable to mount a normal response to bacterial challenge and succumb to microbial infections. In contrast, the expansion of hematopoietic stem cells and lineage-committed myeloid progenitors proceeds relatively normally in mice lacking cyclin D3, revealing that the requirement for cyclin D3 function operates at later stages of neutrophil development. Importantly, we verified that this requirement is specific to cyclin D3, as mice lacking other G1 cyclins (D1, D2, E1, or E2) display normal granulocyte counts. Our analyses revealed that in the bone marrow cells of wild-type mice, activation of the G-CSF receptor leads to upregulation of cyclin D3. Collectively, these results demonstrate that cyclin D3 is an essential cell cycle recipient of G-CSF signaling, and they provide a molecular link of how G-CSF-dependent signaling triggers cell proliferation.


Sign in / Sign up

Export Citation Format

Share Document