Enforced P-glycoprotein pump function in murine bone marrow cells results in expansion of side population stem cells in vitro and repopulating cells in vivo

Blood ◽  
2000 ◽  
Vol 96 (3) ◽  
pp. 902-909 ◽  
Author(s):  
Kevin D. Bunting ◽  
Sheng Zhou ◽  
Taihe Lu ◽  
Brian P. Sorrentino

Abstract The human multidrug resistance-1 (MDR1) gene product, P-glycoprotein (P-gp), is well known for its ability to confer drug resistance; however, recent evidence suggests that P-gp expression can have more general effects on cellular development. In support of this idea, it was previously shown that retroviral-mediated MDR1 expression in murine bone marrow cells resulted in the expansion of stem cells in culture and in the development of a myeloproliferative syndrome in transplanted mice. It is now reported that MDR1-mediated stem cell expansion is associated with an increase in side population (SP) stem cells, defined by Hoechst dye staining. Transduction of murine bone marrow cells with an MDR1 retroviral vector resulted in an almost 2 log increase in SP cell numbers over 12 days in culture, whereas there was a rapid loss of SP cells from control cultures. Stem cell amplification was not limited to ex vivo expansion cultures but was also evident when MDR1-transduced cells were directly transplanted into irradiated mice. In these cases, stem cell expansion was associated with relatively high vector copy numbers in stem cell clones. As previously reported, some cases were associated with a characteristic myeloproliferative syndrome. A functionally inactive MDR1 mutant cDNA was used to show that P-gp pump function was required both for amplification of phenotypically defined SP cells and functionally defined repopulating cells. These studies further support the concept that ABC transporter function can have important effects on hematopoietic stem cell development.

Blood ◽  
2000 ◽  
Vol 96 (3) ◽  
pp. 902-909 ◽  
Author(s):  
Kevin D. Bunting ◽  
Sheng Zhou ◽  
Taihe Lu ◽  
Brian P. Sorrentino

The human multidrug resistance-1 (MDR1) gene product, P-glycoprotein (P-gp), is well known for its ability to confer drug resistance; however, recent evidence suggests that P-gp expression can have more general effects on cellular development. In support of this idea, it was previously shown that retroviral-mediated MDR1 expression in murine bone marrow cells resulted in the expansion of stem cells in culture and in the development of a myeloproliferative syndrome in transplanted mice. It is now reported that MDR1-mediated stem cell expansion is associated with an increase in side population (SP) stem cells, defined by Hoechst dye staining. Transduction of murine bone marrow cells with an MDR1 retroviral vector resulted in an almost 2 log increase in SP cell numbers over 12 days in culture, whereas there was a rapid loss of SP cells from control cultures. Stem cell amplification was not limited to ex vivo expansion cultures but was also evident when MDR1-transduced cells were directly transplanted into irradiated mice. In these cases, stem cell expansion was associated with relatively high vector copy numbers in stem cell clones. As previously reported, some cases were associated with a characteristic myeloproliferative syndrome. A functionally inactive MDR1 mutant cDNA was used to show that P-gp pump function was required both for amplification of phenotypically defined SP cells and functionally defined repopulating cells. These studies further support the concept that ABC transporter function can have important effects on hematopoietic stem cell development.


Blood ◽  
1998 ◽  
Vol 92 (7) ◽  
pp. 2269-2279 ◽  
Author(s):  
Kevin D. Bunting ◽  
Jacques Galipeau ◽  
David Topham ◽  
Ely Benaim ◽  
Brian P. Sorrentino

Attempts to expand repopulating hematopoietic cells ex vivo have yielded only modest amplification in stem cell numbers. We now report that expression of an exogenous human multi-drug resistance 1 (MDR1) gene enables dramatic ex vivo stem cell expansion in the presence of early acting hematopoietic cytokines. Bone marrow cells were transduced with retroviral vectors expressing either the MDR1 gene or a variant of human dihydrofolate reductase (DHFR), and then expanded for 12 days in the presence of interleukin-3 (IL-3), IL-6, and stem cell factor. When these cells were injected into nonirradiated mice, high levels of long-term engraftment were only seen with MDR1-transduced grafts. To verify that expansion of MDR1-transduced repopulating cells had occurred, competitive repopulation assays were performed using MDR1 expanded grafts. These experiments showed progressive expansion of MDR1-transduced repopulating cells over the expansion period, with a 13-fold overall increase in stem cells after 12 days. In all of the experiments, mice transplanted with expanded MDR1-transduced stem cells developed a myeloproliferative disorder characterized by high peripheral white blood cell counts and splenomegaly. These results show that MDR1-transduced stem cells can be expanded in vitro using hematopoietic cytokines without any drug selection, but enforced stem cell self-renewal divisions can have adverse consequences.


Blood ◽  
1998 ◽  
Vol 92 (7) ◽  
pp. 2269-2279 ◽  
Author(s):  
Kevin D. Bunting ◽  
Jacques Galipeau ◽  
David Topham ◽  
Ely Benaim ◽  
Brian P. Sorrentino

Abstract Attempts to expand repopulating hematopoietic cells ex vivo have yielded only modest amplification in stem cell numbers. We now report that expression of an exogenous human multi-drug resistance 1 (MDR1) gene enables dramatic ex vivo stem cell expansion in the presence of early acting hematopoietic cytokines. Bone marrow cells were transduced with retroviral vectors expressing either the MDR1 gene or a variant of human dihydrofolate reductase (DHFR), and then expanded for 12 days in the presence of interleukin-3 (IL-3), IL-6, and stem cell factor. When these cells were injected into nonirradiated mice, high levels of long-term engraftment were only seen with MDR1-transduced grafts. To verify that expansion of MDR1-transduced repopulating cells had occurred, competitive repopulation assays were performed using MDR1 expanded grafts. These experiments showed progressive expansion of MDR1-transduced repopulating cells over the expansion period, with a 13-fold overall increase in stem cells after 12 days. In all of the experiments, mice transplanted with expanded MDR1-transduced stem cells developed a myeloproliferative disorder characterized by high peripheral white blood cell counts and splenomegaly. These results show that MDR1-transduced stem cells can be expanded in vitro using hematopoietic cytokines without any drug selection, but enforced stem cell self-renewal divisions can have adverse consequences.


1996 ◽  
Vol 183 (4) ◽  
pp. 1797-1806 ◽  
Author(s):  
M A Goodell ◽  
K Brose ◽  
G Paradis ◽  
A S Conner ◽  
R C Mulligan

Hematopoietic stem cells (HSC) are multipotent cells that reside in the bone marrow and replenish all adult hematopoietic lineages throughout the lifetime of the animal. While experimenting with staining of murine bone marrow cells with the vital dye, Hoechst 33342, we discovered that display of Hoechst fluorescence simultaneously at two emission wavelengths revealed a small and distinct subset of whole bone marrow cells that had phenotypic markers of multipotential HSC. These cells were shown in competitive repopulation experiments to contain the vast majority of HSC activity from murine bone marrow and to be enriched at least 1,000-fold for in vivo reconstitution activity. Further, these Hoechst-stained side population (SP) cells were shown to protect recipients from lethal irradiation at low cell doses, and to contribute to both lymphoid and myeloid lineages. The formation of the Hoechst SP profile was blocked when staining was performed in the presence of verapamil, indicating that the distinctly low staining pattern of the SP cells is due to a multidrug resistance protein (mdr) or mdr-like mediated efflux of the dye from HSC. The ability to block the Hoechst efflux activity also allowed us to use Hoechst to determine the DNA content of the SP cells. Between 1 and 3% of the HSC were shown to be in S-G2M. This also enabled the purification of the G0-G1 and S-G2M HSC had a reconstitution capacity equivalent to quiescent stem cells. These findings have implications for models of hematopoietic cell development and for the development of genetic therapies for diseases involving hematopoietic cells.


1977 ◽  
Vol 145 (6) ◽  
pp. 1567-1579 ◽  
Author(s):  
S Abramson ◽  
RG Miller ◽  
RA Phillips

The precise relationship between the stem cells for the lymphoid system and those for the blood-forming system is unclear. While it is generally assumed that the hemopoietic stem cell, the spleen colony-forming unit (CFU-S), is also the stem cell for the lymphoid system, there is little evidence for this hypothesis. To investigate the stem cells in these two systems, we irradiated bone marrow cells to induce unique chromosome aberrations in the stem cell population and injected them at limiting dilution into stem cell-deficient recipients. Several months (between 3 and 11) were allowed for the injected cells to repopulate the hemopoietic system. At that time, the bone marrow, spleen, and thymus were examined for a high frequency of cells having the same unique chromosome aberration. The presence of such markers shows that the marker was induced in a cell with extensive proliferative capacity, i.e., a stem cell. In addition, the splenic lymphocytes were stimulated with phytohemagglutinin (PHA) or lipopolysaccharide (LPS) to search for unique chromosomes in dividing T and B cells, respectively. Finally, bone marrow cells were injected into secondary irradiated recipients to determine if the marker occurred in CFU-S and to determine whether or not the same tissue distributions of marked cells could be propogated by bone marrow cells in a second recipient. After examination of 28 primary recipients, it was possible to identify three unique patterns of stem cell regeneration. In one set of mice, a unique chromosome marker was observed in CFU-S and in PHA- and LPS-stimulated cultures. These mice provide direct evidence for a pluripotent stem cell in bone marrow. In addition, two restricted stem cells were identified by this analysis. In three recipients, abnormal karyotypes were found only in myeloid cells and not in B and T lymphocytes. These mice presumably received a marked stem cell restricted to differentiate only into myeloid progeny. In three other recipients, chromosome aberrations were found only in PHA-stimulated cells; CFU-S and cells from LPS cultures did not have cells with the unique chromosome. This pattern suggests that bone marrow contains cells committed to differentiation only into T lymphocytes. For each of the three types of stem cells, secondary recipients had the same cellular distribution of marked cells as the primary recipients. This observation provides further evidence that unique markers can be induced in both pluripotent and restricted stem cells.


Blood ◽  
1987 ◽  
Vol 70 (6) ◽  
pp. 1758-1763 ◽  
Author(s):  
T Nakano ◽  
N Waki ◽  
H Asai ◽  
Y Kitamura

Abstract The spleen colony-forming assay does not represent the number of hematopoietic stem cells with extensive self-maintaining capacity because five to 50 spleen colony-forming units (CFU-S) are necessary to rescue a genetically anemic (WB X C57BL/6)F1-W/Wv(WBB6F1-W/Wv) mouse. We investigated which is more important for the reconstitution of erythropoiesis, the transplantation of multiple CFU-S or that of a single stem cell with extensive self-maintaining potential. The electrophoretic pattern of hemoglobin was used as a marker of reconstitution and that of phosphoglycerate kinase (PGK), an X chromosome-linked enzyme, as a tool for estimating the number of stem cells. For this purpose, we developed the C57BL/6 congeneic strain with the Pgk-1a gene. Bone marrow cells were harvested after injection of 5- fluorouracil from C57BL/6-Pgk-1b/Pgk-1a female mice in which each stem cell had either A-type PGK or B-type PGK due to the random inactivation of one or two X chromosomes. When a relatively small number of bone marrow cells (ie, 10(3) or 3 X 10(3] were injected into 200-rad- irradiated WBB6F1-W/Wv mice, the hemoglobin pattern changed from the recipient type (Hbbd/Hbbs) to the donor type (Hbbs/Hbbs) in seven of 150 mice for at least 8 weeks. Erythrocytes of all these WBB6F1-W/Wv mice showed either A-type PGK alone or B-type PGK alone during the time of reconstitution, which suggests that a single stem cell with extensive self-maintaining potential may sustain the whole erythropoiesis of a mouse for at least 8 weeks.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 1577-1577
Author(s):  
Yaoyu Chen ◽  
Sullivan Con ◽  
Yiguo Hu ◽  
Linghong Kong ◽  
Cong Peng ◽  
...  

Abstract Abstract 1577 Hematopoiesis is a tightly regulated biological process that relies upon complicated interactions between the blood cells and their microenvironment. Adhesion molecules like P-selectin are essential to hematopoiesis, and their dysregulation has been implicated in leukemogenesis. We have previously shown a role for P-selectin in chronic myeloid leukemia and demonstrated that in its absence the disease process accelerates. Recently, there has also been speculation that P-selectin may play a role in the aging hematopoietic stem cells (HSCs), as its expression in upregulated as a mouse ages. In this study, we show that the loss of P-selectin function dysregulates the balance of stem cells and progenitors and that these differences become more pronounced with age. We compared the percentages of HSCs, long-term (LT)-HSCs, short-term (ST)-HSCs, multipotent progenitors (MPPs), CMPs, GMPs and MEPs in bone marrow by flow cytometry between wild type (WT) and Selp-/- mice. An age-dependent LT-HSC expansion was observed in WT mice. However, this expansion was prevented by the loss of Selp as observed in Selp-/-mice. Further, we demonstrate that with age LT-HSCs in particular express more elevated levels of P-selectin. LT-HSCs and ST-HSC/MPPs were isolated from the bone marrow of young (2 months old) and old (15 months old) WT mice and examined P-selectin expression by FACS. A significant increase in P-selectin expression was observed in LT-HSCs of old mice, and this increase was not observed in the ST-HSC+MPP subpopulations. We also show that the loss of P-selectin gene has profound effects of stem cell function, altering the capacity of these cells to home. Despite impaired homing capacity, stem cells lacking P-selectin possess a competitive advantage over their wild type counterparts. Using a stem cell competition assay, HSCs derived from Selp-/- mice (CD45.2+) and WT control mice (CD45.2+GFP+) were mixed in 1:1 ratio and transplanted into irradiated WT recipients (CD45.1). The initial findings were potentially indicative of the ability of cells derived from GFP mice to more efficiently home and engraft. Despite this initial advantage, cells derived from Selp-/- eventually exhibited a competitive and statistically significant advantage over the cells derived from GFP mice. At 30 days post-transplant, 49.9±1.4% of the CD45.2 subpopulation was GFP+. At 86 days post-transplant, 25.7±3.3 % of the CD45.2 cells derived from the peripheral blood were GFP+. Similarly, 23.0±3.7% of the CD45.2 cells derived from the bone marrow of these mice were GFP+. Indeed, we demonstrate that recipients of P-selectin deficient bone marrow cells more efficiently repopulate the bone marrow than controls and that this advantage extends and expands in the long-term. Finally, we demonstrate that recipients of leukemic cells lacking P-selectin develop a more accelerated form of leukemia accompanied by significant increases in stem and progenitor cells. Bone marrow cells from donor WT and Selp-/- mice were infected with retrovirus expressing BCR-ABL-GFP, and irradiated WT recipients were transplanted with 2×105 of these transduced donor cells. At 14 days post-transplant, recipient mice from each of the groups were sacrificed, and bone marrow cells were harvested and analyzed by flow cytometry. Recipients of leukemic Selp-/- cells possessed 3.5-fold more LSCs than recipients of wild-type cells. There were 3.1-fold more LT-LSCs and 3.8-fold more ST-LSCs and MPPs in recipients of Selp-/- cells than WT cells. In addition, recipients of leukemic Selp-/- cells possessed significantly more CMP (16.9-fold) and MEP (4.5-fold) cells. Because P-selectin expression increases with age on LT-HSCs, we sought to determine the role that age plays in CML development and progression. Bone marrow cells derived from 15-month-old donor Selp-/- and WT mice were transduced with BCR-ABL, respectively, followed by transplantation of the transduced cells into recipient mice. All recipients of BCR-ABL transduced Selp-/- cells died by 23 days after induction of CML and had a median survival of 19 days, whereas recipients of the transduced WT cells survived significantly longer. This pro-leukemic role for cells lacking P-selectin expression is leukemic stem cell-specific rather than stromal cell-specific and supports an essential role for P-selectin on leukemic stem cells. Disclosures: No relevant conflicts of interest to declare.


1978 ◽  
Vol 148 (5) ◽  
pp. 1351-1366 ◽  
Author(s):  
I Goldschneider ◽  
L K Gordon ◽  
R J Morris

Three approaches were used to demonstrate the presence of Thy-1 antigen on the surface of pluripotent hemopoietic stem cells in the rat. In the first, stem cells from fetal liver, neonatal spleen, and adult bone marrow were prevented from forming hemopoietic colonies in the spleens of irradiated recipients spleen (colony-forming unit assay) by incubation with antibodies to Thy-1 antigen. Highly specific rabbit heteroantiserum to purified rat brain Thy-1 antigen and mouse alloantisera to Thy-1.1-positive thymocytes were equally effective. This inhibition was neutralized by purified Thy-1 antigen. In a second series of experiments, Thy-1-positive and Thy-1-negative populations of nucleated bone marrow cells were separated by the FACS. All of the hemopoietic stem cell activity was recovered in the Thy-1-positive population. The stem cells were among the most strongly positive for Thy-1 antigen, being in the upper 25th percentile for relative fluorescence intensity. The relationships of Thy-1 antigen to the rat bone marrow lymphocyte antigen (BMLA) was shown in a third series of experiments. Rabbit anti-BMLA serum, which is raised against a null population of lymphocyte-like bone marrow cells, has been shown to have anti-stem cell activity. Here we demonstrate by double immunofluorescence, cocapping, and differential absorption studies that Thy-1 and BMLA are parts of the same molecule.


Blood ◽  
1991 ◽  
Vol 78 (2) ◽  
pp. 310-317 ◽  
Author(s):  
JF Apperley ◽  
BD Luskey ◽  
DA Williams

Retroviral-mediated gene transfer of human adenosine deaminase (hADA) provides a model system for the development of somatic gene therapy as a therapy for diseases of bone marrow-derived cells. We have previously demonstrated that hADA can be observed in all hematopoietic lineages in a minority of mice transplanted with bone marrow cells infected with a simplified retroviral vector, ZipPGK-ADA. Here we report a majority of mice (six of eight) demonstrate expression of hADA in the peripheral blood at least 6 months after transplantation with bone marrow infected with this simplified retroviral vector, which contains no selectable marker. The failure to express hADA in two of eight mice was associated with the absence of the recombinant retroviral provirus in DNA prepared from bone marrow cells of these mice apparently due to failure to efficiently infect the reconstituting hematopoietic stem cell. In an effort to preselect bone marrow stem cells containing proviral integrations, we incorporated the selectable marker neo phosphotransferase (NEO) into a retroviral vector encoding hADA, N2/ZipPGK-ADATKNEO, and used G418 selection of infected bone marrow cells before transplantation. In contrast to the simplified retroviral vector, hADA expression in these recipients was short lived (less than 8 weeks), despite the continued presence of intact provirus in DNA prepared from bone marrow of these mice. To determine whether the preselection of bone marrow using G418 was responsible for the lack of sustained hADA expression, we repeated the infection with the N2/ZipPGK- ADATKNEO vector but omitted the G418 selection step. Again, the majority of recipient mice failed to express hADA long term, although the continued presence of provirus in DNA prepared from peripheral blood cell mononuclear cells was clearly demonstrated. Finally, we demonstrate clonal fluctuation of infected stem cells, and observe a temporal correlation between cessation of expression of hADA and the emergence of a dominant stem cell clone between 14 and 20 weeks posttransplantation in one recipient. These data suggest that inclusion of a second transcriptional unit that includes neo phosphotransferase sequences in this simplified vector is associated with decreased expression of the nonselectable ADA sequences.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 5484-5484
Author(s):  
Yuan Lin ◽  
Stanton L. Gerson

Abstract Lentiviral vectors have been shown to infect non-dividing cells, including hematopoietic stem cell [HSC], and HIV lentiviral vector has been studied extensively in preclinical models. However low HIV lentiviral vector transduction efficiency compared to retroviral vectors, is seen in murine HSC, hampering transplantation and long-term expression of transgene in the recipients. Furthermore, concerns remain regarding the safety of HIV based vectors. Simian Immunodeficiency Viral [SIV] vectors could be safer since the parent virus does not cause disease in humans. However, to model this approach has been difficult because native SIV vectors do not transduce murine cells. We have generated a bicistronic SIV lentiviral SIN vector, containing MGMT and firefly luciferase genes linked by a self-cleavage FMDV 2A sequence. The SIV backbone was kindly provided by Dr. Donald Kohn (University of Southern California). The transgenes are controlled by the MND promoter, which has been shown to express well in murine hematopoietic stem cells. The vector was generated by cross-packaging SIV RNA with HIV-1 ΔR8.91 packaging plasmid and VSVG pseudotyped envelope (Ref. Retrovirology2005, 2:55). Unconcentrated viruses had an average titer of 1E+06 iu/ml, which was similar to HIV-1 lentiviral vectors. In vitro, HIV-1 cross-packaged SIV-mnd-MGMT-2A-Luc vector was able to transduce both human and murine cell lines with no reduction of expression for 10 weeks. In addition, this cross-packaged SIV vector was also able to transduce primary murine bone marrow cells from Balb/C mice with low MOI of 0.5 to 1. Transduced primary murine bone marrow cells maintained transgene expression during a 4 week culture. To analyze in vivo expression, Balb/C bone marrow cells were transduced for 48 hrs in cytokines with the HIV-1 packaged SIV vector and transplanted into irradiated recipients. We used bioluminescent imaging (BLI) to monitor the transgene expression and the dynamic engraftment of transduced murine bone marrow cells. At MOI of 0.5 or 5, transduction efficiencies in murine progenitor cells were 24.4% and 46.7% respectively by PCR of transgene from CFU colonies. Bioluminescent imaging indicated similar engraftment patterns of transduced bone marrow cells by HIV-1 lentiviral vector or cross-packaged SIV lentiviral vector, as early as day 5. Consistent BLI signals indicated sustained expression of transgene in SIV vector transduced bone marrow cells beyond 30 days. With this study, cross-packaged SIV SIN vector could be used as a potential gene transfer vector in both preclinical murine studies and perhaps in clinical trials.


Sign in / Sign up

Export Citation Format

Share Document