Synergism of multiple adhesion molecules in mediating cytoadherence of Plasmodium falciparum–infected erythrocytes to microvascular endothelial cells under flow

Blood ◽  
2000 ◽  
Vol 96 (6) ◽  
pp. 2292-2298 ◽  
Author(s):  
Bryan G. Yipp ◽  
Samantha Anand ◽  
Tineke Schollaardt ◽  
Kamala D. Patel ◽  
Sornchai Looareesuwan ◽  
...  

Plasmodium falciparum–infected erythrocytes (IRBCs) have been shown to interact with a number of endothelial adhesion molecules expressed on transfectants, on cell lines, and as immobilized purified receptor proteins under flow conditions. However, the experiments were designed in such a way that maximal numbers of adhesion molecules were provided as substratum. Whether the interactive events actually occur on microvascular endothelium, where the distribution and expression of adhesion molecules may be less, remains undetermined. In this study, the cytoadherance of IRBCs on human dermal microvascular endothelial cells (HDMECs) as a model of human microvasculature was examined. IRBCs were observed to tether, roll, and adhere on resting HDMECs, which constitutively expressed CD36 and intercellular adhesion molecule-1 (ICAM-1) at an optimal shear stress of 1 dyne/cm2. Stimulation of HDMECs with tumor necrosis factor–α for 5 and 24 hours, which resulted in up-regulation of ICAM-1 and induction of vascular cell adhesion molecule-1 expression, significantly increased the percentage of rolling cells that adhered without affecting the rolling flux. In contrast, P-selectin expression on HDMECs induced by oncostatin M led to an increase in both rolling flux and adhesion. Inhibition studies with receptor-specific monoclonal antibodies revealed that adhesion of IRBCs on HDMECs was largely CD36 dependent, whereas rolling could be mediated by any of the adhesion molecules studied. Collectively, these findings indicate that IRBCs interact synergistically with multiple adhesion molecules on vascular endothelium. The rolling of IRBCs may be the rate-limiting step in cytoadherance, since it can be modulated by cytokines to enhance CD36-mediated IRBC adhesion.

Blood ◽  
2000 ◽  
Vol 96 (6) ◽  
pp. 2292-2298 ◽  
Author(s):  
Bryan G. Yipp ◽  
Samantha Anand ◽  
Tineke Schollaardt ◽  
Kamala D. Patel ◽  
Sornchai Looareesuwan ◽  
...  

Abstract Plasmodium falciparum–infected erythrocytes (IRBCs) have been shown to interact with a number of endothelial adhesion molecules expressed on transfectants, on cell lines, and as immobilized purified receptor proteins under flow conditions. However, the experiments were designed in such a way that maximal numbers of adhesion molecules were provided as substratum. Whether the interactive events actually occur on microvascular endothelium, where the distribution and expression of adhesion molecules may be less, remains undetermined. In this study, the cytoadherance of IRBCs on human dermal microvascular endothelial cells (HDMECs) as a model of human microvasculature was examined. IRBCs were observed to tether, roll, and adhere on resting HDMECs, which constitutively expressed CD36 and intercellular adhesion molecule-1 (ICAM-1) at an optimal shear stress of 1 dyne/cm2. Stimulation of HDMECs with tumor necrosis factor–α for 5 and 24 hours, which resulted in up-regulation of ICAM-1 and induction of vascular cell adhesion molecule-1 expression, significantly increased the percentage of rolling cells that adhered without affecting the rolling flux. In contrast, P-selectin expression on HDMECs induced by oncostatin M led to an increase in both rolling flux and adhesion. Inhibition studies with receptor-specific monoclonal antibodies revealed that adhesion of IRBCs on HDMECs was largely CD36 dependent, whereas rolling could be mediated by any of the adhesion molecules studied. Collectively, these findings indicate that IRBCs interact synergistically with multiple adhesion molecules on vascular endothelium. The rolling of IRBCs may be the rate-limiting step in cytoadherance, since it can be modulated by cytokines to enhance CD36-mediated IRBC adhesion.


1997 ◽  
Vol 273 (4) ◽  
pp. C1233-C1240 ◽  
Author(s):  
Justin C. Mason ◽  
Helen Yarwood ◽  
Katharine Sugars ◽  
Dorian O. Haskard

Changes in endothelial cell (EC) phenotype are central to the function of endothelium in inflammation. Although these events mainly occur in the microvasculature, previous studies have predominantly used large-vessel EC. Using enzyme-linked immunosorbent and flow cytometric assays, we compared the responses of human umbilical vein endothelial cells (HUVEC) and dermal microvascular endothelial cells (DMEC) to the activation of protein kinase C (PKC). Stimulation with phorbol 12,13-dibutyrate and more selective PKC agonists, including 12-deoxyphorbol 13-phenylacetate 20-acetate (dPPA), induced morphological changes and proliferation in both EC types. PKC activation induced a marked increase in Thy-1 expression on DMEC and only a moderate rise on HUVEC. Furthermore, heterogeneity in the induction of the adhesion molecules intercellular adhesion molecule 1, vascular cell adhesion molecule 1 (VCAM-1), and E-selectin between the two EC types following activation of PKC was demonstrated. In particular, E-selectin and VCAM-1 were significantly upregulated on HUVEC but not DMEC. The data indicate that the PKC pathway is unlikely to be important for E-selectin and VCAM-1 expression in the microvasculature but are consistent with a role for PKC in angiogenesis. This diversity in signaling in response to PKC activation may depend on differential utilization of PKC isozymes and may facilitate specialized endothelial responses.


Blood ◽  
1999 ◽  
Vol 94 (6) ◽  
pp. 2121-2127 ◽  
Author(s):  
Dror I. Baruch ◽  
Xin C. Ma ◽  
Brittan Pasloske ◽  
Russell J. Howard ◽  
Louis H. Miller

Abstract Mature Plasmodium falciparum parasitized erythrocytes (PE) sequester from the circulation by adhering to microvascular endothelial cells. PE sequestration contributes directly to the virulence and severe pathology of falciparum malaria. The scavenger receptor, CD36, is a major host receptor for PE adherence. PE adhesion to CD36 is mediated by the malarial variant antigen, P. falciparumerythrocyte membrane protein 1 (PfEMP1), and particularly by its cysteine-rich interdomain region 1 (CIDR-1). Several peptides from the extended immunodominant domain of CD36 (residues 139-184), including CD36 139-155, CD36 145-171, CD36 146-164, and CD36 156-184 interfered with the CD36-PfEMP1 interaction. Each of these peptides affected binding at the low micromolar range in 2 independent assays. Two peptides, CD36 145-171 and CD36 156-184, specifically blocked PE adhesion to CD36 without affecting binding to the host receptor intercellular adhesion molecule-1 (ICAM-1). Moreover, an adhesion blocking peptide from the ICAM-1 sequence inhibits the PfEMP1–ICAM-1 interaction without affecting adhesion to CD36. These results confirm earlier observations that PfEMP1 is also a receptor for ICAM-1. Thus, the region 139-184 and particularly the 146-164 or the 145-171 regions of CD36 form the adhesion region for P. falciparum PE. Adherence blocking peptides from this region may be useful for modeling the PE/PfEMP1 interaction with CD36 and for development of potential anti-adhesion therapeutics.


Toxins ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 435
Author(s):  
Elena B. Volokhina ◽  
Wouter J. C. Feitz ◽  
Lonneke M. Elders ◽  
Thea J. A. M. van der Velden ◽  
Nicole C. A. J. van de Kar ◽  
...  

Hemolytic uremic syndrome (HUS) is a severe renal disease that is often preceded by infection with Shiga toxin (Stx)-producing Escherichia coli (STEC). The exact mechanism of Stx-mediated inflammation on human glomerular microvascular endothelial cells (HGMVECs) during HUS is still not well understood. In this study, we investigated the effect of Stx1 on the gene expression of proteins involved in leucocyte-mediated and complement-mediated inflammation. Our results showed that Stx1 enhances the mRNA and protein expression of heparan sulfate proteoglycan (HSPG) syndecan-4 in HGMVECs pre-stimulated with tumor necrosis factor α (TNFα). CD44 was upregulated on mRNA but not on protein level; no effect on the mRNA expression of other tested HSPGs glypican-1 and betaglycan was observed. Furthermore, Stx1 upregulated the mRNA, cell surface expression, and supernatant levels of the intercellular adhesion molecule-1 (ICAM-1) in HGMVECs. Interestingly, no effect on the protein levels of alternative pathway (AP) components was observed, although C3 mRNA was upregulated. All observed effects were much stronger in HGMVECs than in human umbilical endothelial cells (HUVECs), a common model cell type used in endothelial studies. Our results provide new insights into the role of Stx1 in the pathogenesis of HUS. Possibilities to target the overexpression of syndecan-4 and ICAM-1 for STEC-HUS therapy should be investigated in future studies.


Endocrinology ◽  
2009 ◽  
Vol 150 (8) ◽  
pp. 3475-3482 ◽  
Author(s):  
Guolian Li ◽  
Eugene J. Barrett ◽  
Seung-Hyun Ko ◽  
Wenhong Cao ◽  
Zhenqi Liu

Patients with type 2 diabetes are hyperinsulinemic and insulin resistant and develop premature atherosclerosis. High concentrations of insulin stimulate the production of adhesion molecules by endothelial cells (ECs). ECs express abundant IGF-I receptors as well as insulin receptors. Whether IGF-I receptors contribute to insulin-induced endothelial production of adhesion molecules is unknown. Bovine aortic ECs (BAECs) were incubated with insulin (100 nm) for 24 h. The cellular content of vascular cell adhesion molecule-1 (VCAM-1) and intercellular adhesion molecule-1 (ICAM-1) was measured, and monocyte adhesion to ECs was quantified. Insulin increased both VCAM-1 (P < 0.001) and ICAM-1 (P < 0.0002) content, which was accompanied by an increased number of monocytes adherent to BAECs (P = 0.0001). Inhibition of either MAPK kinase-1 or p38 MAPK but not phosphatidylinositol 3-kinase abolished insulin-mediated production of adhesion molecules. Insulin receptor small interfering RNA knockdown abolished insulin-stimulated increases of ICAM-1 but not VCAM-1. Conversely, IGF-I receptor blockade with either a neutralizing antibody or specific small interfering RNA eliminated insulin-induced VCAM-1 but not ICAM-1 production. Blockade of signaling via either the insulin or IGF-I receptors decreased monocyte adherence to BAECs (P < 0.01 for each). We conclude that insulin and IGF-I receptors differentially mediate the production of adhesion molecules by ECs and monocyte adhesion onto the vascular endothelium in response to the hyperinsulinemic state. Dual-receptor activation may most effectively contribute to the pathogenesis of atherosclerotic disease in diabetes.


Sign in / Sign up

Export Citation Format

Share Document