Protease-activated receptors 1 and 4 do not stimulate Gi signaling pathways in the absence of secreted ADP and cause human platelet aggregation independently of Gisignaling

Blood ◽  
2002 ◽  
Vol 99 (10) ◽  
pp. 3629-3636 ◽  
Author(s):  
Soochong Kim ◽  
Carolyn Foster ◽  
Anna Lecchi ◽  
Todd M. Quinton ◽  
Dina M. Prosser ◽  
...  

Thrombin is an important agonist for platelet activation and plays a major role in hemostasis and thrombosis. Thrombin activates platelets mainly through protease-activated receptor 1 (PAR1), PAR4, and glycoprotein Ib. Because adenosine diphosphate and thromboxane A2 have been shown to cause platelet aggregation by concomitant signaling through Gq and Gipathways, we investigated whether coactivation of Gq and Gi signaling pathways is the general mechanism by which PAR1 and PAR4 agonists also activate platelet fibrinogen receptor (αIIbβ3).  A PAR1-activating peptide, SFLLRN, and PAR4-activating peptides GYPGKF and AYPGKF, caused inhibition of stimulated adenylyl cyclase in human platelets but not in the presence of either Ro 31-8220, a protein kinase C selective inhibitor that abolishes secretion, or AR-C66096, a P2Y12 receptor–selective antagonist; α-thrombin–induced inhibition of adenylyl cyclase was also blocked by Ro 31-8220 or AR-C66096. In platelets from a P2Y12 receptor–defective patient, α-thrombin, SFLLRN, and GYPGKF also failed to inhibit adenylyl cyclase. In platelets from mice lacking the P2Y12 receptor, neither α-thrombin nor AYPGKF caused inhibition of adenylyl cyclase. Furthermore, AR-C66096 caused a rightward shift of human platelet aggregation induced by the lower concentrations of α-thrombin and AYPGKF but had no effect at higher concentrations. Similar results were obtained with platelets from mice deficient in the P2Y12. We conclude that (1)thrombin- and thrombin receptor-activating peptide–induced inhibition of adenylyl cyclase in platelets depends exclusively on secreted adenosine diphosphate that stimulates Gi signaling pathways and (2) thrombin and thrombin receptor-activating peptides cause platelet aggregation independently of Gi signaling.

1994 ◽  
Vol 71 (01) ◽  
pp. 091-094 ◽  
Author(s):  
M Cattaneo ◽  
B Akkawat ◽  
R L Kinlough-Rathbone ◽  
M A Packham ◽  
C Cimminiello ◽  
...  

SummaryNormal human platelets aggregated by thrombin undergo the release reaction and are not readily deaggregated by the combination of inhibitors hirudin, prostaglandin E1 (PGE1) and chymotrypsin. Released adenosine diphosphate (ADP) plays an important role in the stabilization of thrombin-induced human platelet aggregates. Since ticlopidine inhibits the platelet responses to ADP, we studied thrombin-induced aggregation and deaggregation of 14C-serotonin-labeled platelets from 12 patients with cardiovascular disease before and 7 days after the oral administration of ticlopidine, 250 mg b.i.d. Before and after ticlopidine, platelets stimulated with 1 U/ml thrombin aggregated, released about 80–90% 14C-serotinin and did not deaggregate spontaneously within 5 min from stimulation. Before ticlopidine, hirudin (5× the activity of thrombin) and PGE1 (10 μmol/1) plus chymotrypsin (10 U/ml) or plasmin (0.06 U/ml), added at the peak of platelet aggregation, caused slight or no platelet deaggregation. After ticlopidine, the extent of platelet deaggregation caused by the same inhibitors was significantly greater than before ticlopidine. The addition of ADP (10 μmol/1) to platelet suspensions 5 s after thrombin did not prevent the deaggregation of ticlopidine-treated platelets. Thus, ticlopidine facilitates the deaggregation of thrombin-induced human platelet aggregates, most probably because it inhibits the effects of ADP on platelets.


1989 ◽  
Vol 62 (03) ◽  
pp. 955-961 ◽  
Author(s):  
Ian S Watts ◽  
Rebecca J Keery ◽  
Philip Lumley

SummaryWe have investigated the effect of two procedures that modify human platelet surface membrane glycoprotein (Gp) IIb and IIIa complexes upon whole blood platelet aggregation to a range of agonists. (A) Irreversible disruption of complexes by temporary (30 min) Ca2+-deprivation with EGTA at 37° C. (B) Binding of a monoclonal antibody M148 to the complex. EGTA exposure abolished aggregation to ADP, adrenaline and PAF. In contrast, full aggregation curves to collagen and U-46619 could still be established. EGTA exposure reduced M148 binding to platelets by 80%. Excess M148 abolished aggregation to ADP, PAF, collagen and U-46619. However, upon removal of unbound antibody from platelets full aggregation curves to collagen and U-46619 but not to ADP and PAF could be re-established. Thus human platelet aggregation to ADP, PAF and adrenaline appears absolutely dependent upon surface membrane GpIIb/IIIa complexes. In contrast, collagen and U-46619 cause expression of an additional distinct pool of Gp complexes inaccessible to EGTA and M148 in unstimulated platelets which is intimately involved in aggregation to these agonists.


2012 ◽  
Vol 7 (7) ◽  
pp. 1934578X1200700 ◽  
Author(s):  
Huei-Ping Dong ◽  
Rei-Cheng Yang ◽  
I-Chun Chunag ◽  
Li-Ju Huang ◽  
Hsing-Tan Li ◽  
...  

The effects of hexahydrocurcumin on adenosine diphosphate (ADP)-induced human platelet aggregation were studied. Treatment of human platelet-rich plasma with hexahydrocurcumin resulted in an inhibitory effect on platelet aggregation, suggesting the potential of this compound as an anti-atherosclerogenic agent in humans.


Blood ◽  
1993 ◽  
Vol 81 (7) ◽  
pp. 1792-1800 ◽  
Author(s):  
S De Reys ◽  
C Blom ◽  
B Lepoudre ◽  
PJ Declerck ◽  
M De Ley ◽  
...  

Abstract Twenty murine monoclonal antibodies (MoAbs) generated against different human platelet antigens induced clumping of human platelets in plasma and buffer. Whereas one MoAb could agglutinate platelets, clumping for 19 MoAbs was blocked by metabolic inhibitors, indicating that these induce platelet activation. Fifteen MoAbs were of IgG1, two of IgG2a, and two of IgG2b subtype. F(ab')2 fragments of these did not evoke an aggregatory response, but specifically inhibited aggregations by and binding of their respective intact MoAbs to platelets. Single-platelet counting technology indicated that the MoAbs bind through their antigen- binding and Fc domains mainly to the surface of the same platelet, rather than cause interplatelet-binding. Despite these similarities, the mechanism of action was nevertheless subtype-dependent. Aggregation induced by all IgG1 antibodies could consistently be prevented by blocking the Fc gamma II-receptor, whereas aggregations induced by all IgG2 antibodies still occurred with blocked Fc-receptor, provided functional complement was present. We therefore conclude that platelet activation by MoAb-binding is initiated by antigen recognition followed by an Fc domain-dependent step, which involves the Fc gamma II-receptor for IgG1-type MoAbs and complement-binding for IgG2-type MoAbs. Thus, antibodies of different subtypes can aggregate platelets via different pathways.


1981 ◽  
Author(s):  
N J Cusack ◽  
S M O Hourani

ADP induces human platelet aggregation and inhibits the stimulation of platelet adenylate cyclase by prostaglandin E1 (PGE1), but analogues of ADP in which the diphosphate group is modified retain only weak aggregating activity. However, ADP-β-S, an ADP analogue in which a terminal phosphate oxygen is replaced by sulphur, is known to be equipotent with ADP as an inhibitor of PGE1-stimulated adenylate cyclase in purified human platelet membranes. We therefore tested ADP-β-S on intact human platelets. ADP-β-S induced human platelet aggregation and inhibited PGE1-stimulated adenylate cyclase, but in botn cases was less potent than ADP and only achieved 75% and 50% respectively of the maximal effects of ADP. Aggregation induced by ADP-β-S was competitively inhibited by ATP (50 μM), a known ADP antagonist.Both these actions of ADP could be inhibited by the simultaneous addition of ADP-β-S (50 μM). Aggregation induced by a stable endoperoxide analogue (11 ,9 -epoxymethano PGH2), which acts at a prostaglandin receptor rather than at an ADP receptor, was not inhibited by the simultaneous addition of ADP-β-S (50 μM). The behaviour of ADP-β-S towards human platelets is therefore tnat of a partial agonist at the ADP receptor.


1981 ◽  
Author(s):  
G J Johnson ◽  
G H R Rao ◽  
J G White

Epinephrine (E) potentiates arachidonate (A)-induced aggregation of human platelets. A-insensitive dog platelets (AIP), that form thromboxane A2 (T) but do not aggregate when stirred with A alone, aggregate when exposed to E + A. Therefore, we studied the effect of E on T-stimu- lated human platelet aggregation. AIP stirred with A formed T which was confirmed by TLC. 1/100 to 1/200 volume of AIP was removed 30 sec. after A, and transferred to gel- filtered, aspirin-incubated human platelets. Recipient platelet aggregation was proportional to the volume of AIP transferred. The addition of the thromboxane synthetase inhibitor, Azo Analog I, abolished the aggregating activity of AIP. Transfer of an aliquot of AIP that was inadequate to aggregate human gel-filtered, aspirin-incubated platelets resulted in irreversible aggregation in the presence of ≥0.5nM E. E potentiated aggregation when added 3 min. before but not 3 min. after aliquot transfer. T-stimulated aggregation was abolished by the T-antagonist, 13 azapro- stenoic acid (APA), but E added after APA and before T restored aggregation. E potentiation of T-stimulated aggregation was abolished by prior exposure to equimolar yohimbine, dihydroergocryptine and phentolamine, agents that bind to alpha2 adrenergic receptors, but not by prazosin an alpha1 antagonist. Higher concentrations of E reversed the inhibitory effects of the alpha2 adrenergic agents. All of these agents in higher concentrations (1-100μM) also blocked aggregation induced by T alone. Therefore T-induced platelet aggregation is potentiated by E, in concentrations attained in vivo, by a mechanism linked to platelet alpha adrenergic receptors. Platelet alpha2 receptors have a close functional relationship to the postulated T receptor. E may initiate platelet aggregation in vivo when T is formed in quantities inadequate to alone induce aggregation.


1984 ◽  
Vol 62 (3) ◽  
pp. 338-340
Author(s):  
J. J. F. Killackey ◽  
B. A. Killackey ◽  
I. Cerskus ◽  
R. B. Philp

A hydroperoxide compound structurally related to acetylsalicylic acid, 3-hydroperoxy-3-methylphthalide, inhibits both the first and second phases of adenosine diphosphate induced, biphasic, human platelet aggregation. This occurs over the same concentration range (0.05–0.5 mM) that acetylsalicylic acid inhibits second phase aggregation and the release reaction only. The complete inhibition of adenosine diphosphate induced aggregation is a unique pharmacological property for an acetylsalicylic-acid-like compound.


1997 ◽  
Vol 325 (2) ◽  
pp. 495-500 ◽  
Author(s):  
Catherine CALZADA ◽  
Evelyne VERICEL ◽  
Michel LAGARDE

There is mounting evidence that lipid peroxides contribute to pathophysiological processes and can modulate cellular functions. The aim of the present study was to investigate the effects of lipid hydroperoxides on platelet aggregation and arachidonic acid (AA) metabolism. Human platelets, isolated from plasma, were incubated with subthreshold (i.e. non-aggregating) concentrations of AA in the absence or presence of hydroperoxyeicosatetraenoic acids (HPETEs). Although HPETEs alone had no effect on platelet function, HPETEs induced the aggregation of platelets co-incubated with non-aggregating concentrations of AA, HPETEs being more potent than non-eicosanoid peroxides. The priming effect of HPETEs on platelet aggregation was associated with an increased formation of cyclo-oxygenase metabolites, in particular thromboxane A2, and was abolished by aspirin, suggesting an activation of cyclo-oxygenase by HPETEs. It was not receptor-mediated because the 12-HPETE-induced enhancement of AA metabolism was sustained in the presence of SQ29,548 or RGDS, which blocked the aggregation. These results indicate that physiologically relevant concentrations of HPETEs potentiate platelet aggregation, which appears to be mediated via a stimulation of cyclo-oxygenase activity.


2021 ◽  
Author(s):  
Daisuke Mizutani ◽  
Haruhiko Tokuda ◽  
Takashi Onuma ◽  
Kodai Uematsu ◽  
Daiki Nakashima ◽  
...  

Abstract Background: Amyloid β protein (Aβ) is the main product derived from amyloid precursor protein (APP) by sequential enzymatic actions. Deposition of Aβ in the brain parenchyma or cerebral vessels is a primary morphological feature of Alzheimer’s disease (AD). In addition, abnormal accumulation of Aβ in the cerebral vessels is known as cerebral amyloid angiopathy (CAA), which is considered a risk factor for intracerebral hemorrhage, particularly in the elderly. CAA reportedly contributes to the development of vascular cognitive decline in addition to AD. On the other hand, human platelets are recognized as the principal components affecting the onset and progression of AD. Although there are several studies showing that Aβ directly modulates human platelet functions, the exact mechanism underlying the Aβ effects on human platelets remains to be elucidated.Methods: The present study investigated the effects of Aβ on human platelet activation using a platelet aggregometer with laser scattering, followed by western blot analysis and ELISA.Results: Aβ at doses up to 7 µM alone failed to affect platelet aggregation or platelet-derived growth factor (PDGF)-AB secretion. On the other hand, Aβ decreased the platelet aggregation induced by thrombin receptor-activating protein (TRAP), but not collagen or ADP. Aβ also suppressed platelet aggregation induced by SCP0237, a selective protease-activated receptor (PAR)-1 agonist, and A3227, a selective PAR-4 agonist. The PDGF-AB secretion and the phosphorylated-heat shock protein (HSP)27 release by TRAP were inhibited by Aβ. In addition, the TRAP-induced phosphorylation of JNK and the phosphorylation of p38 MAP kinase followed by phosphorylation of HSP27 were reduced by Aβ.Conclusion: The results of the present study strongly suggest that Aβ negatively regulates PAR-elicited human platelet activation. These findings may indicate one of the causes of intracerebral hemorrhage due to CAA.


2021 ◽  
Vol 10 (3) ◽  
pp. 339-343
Author(s):  
Serm Surapinit ◽  
Nuttakorn Baisaeng

Introduction: Gnetum macrostachyum is a known Thai medicinal plant as a source of bioactive oligostilbenes, which possess platelet inhibitory activities. The study aimed to evaluate the in vitro human platelet aggregation inhibitory activities of macrostachyols A-D (compounds 1-4) isolated from the roots of G. macrostachyum. Methods: The in vitro human platelet aggregation assay was assayed with a 96-well microtiter plate format. The well-known aggregating agents were used to investigate the possible mechanism of inhibition, including adenosine diphosphate (ADP), arachidonic acid (AA), thromboxane A2 analog (U-46619), collagen, thrombin, and thrombin receptor-activating peptide-6 (TRAP-6). Results: Compound 1 was more potent than ibuprofen (positive control) on the adenosine diphosphate- induced platelet aggregation assay (P < 0.05). Compound 3 was more potent than 1, 2, and 4 (P < 0.05), but all active oligostilbenes were less potent than the positive control (P < 0.05) on the arachidonic acid-induced platelet aggregation assay. The oligostilbenes 1, 2, 3, and 4 also displayed the inhibitory effects on the U-46619-induced platelet aggregation. The tetrameric stilbenes 1 was the only compound that exhibited inhibitory effects on thrombin-induced platelet aggregation without TRAP-6 mediated platelet aggregation. Conclusion: The findings revealed the inhibitory effects of oligostilbenes on human platelet aggregation through a target-specific experimental design. It suggests that oligostilbenes from this plant might be applied as antiplatelet aggregation agents in platelet hyperreactivity- related diseases.


Sign in / Sign up

Export Citation Format

Share Document