RANKL contributes to lung tissue repair via promoting type II epithelial cell proliferation

Author(s):  
H Habibie ◽  
S Song ◽  
K Putri ◽  
C Boorsma ◽  
R Cool ◽  
...  
Author(s):  
Habibie Habibie ◽  
Shanshan Song ◽  
Kurnia Putri ◽  
Carian Boorsma ◽  
Robbert Cool ◽  
...  

2004 ◽  
Vol 96 (2) ◽  
pp. 704-710 ◽  
Author(s):  
Jens M. Hohlfeld ◽  
Heinz G. Hoymann ◽  
Thomas Tschernig ◽  
Antonia Fehrenbach ◽  
Norbert Krug ◽  
...  

Keratinocyte growth factor (KGF) is a mitogen for pulmonary epithelial cells. Intratracheal administration of KGF to adult rats results in alveolar epithelial type II and bronchiolar epithelial cell proliferation. While cellular responses to KGF have been intensively studied, functional consequences regarding lung function are unknown. Therefore, in this study, we sought to investigate whether KGF alters pulmonary function variables. Rats received either recombinant human KGF (rHuKGF) (5 mg/kg) or vehicle intratracheally. Before and on days 3 and 7 after treatment, pulmonary function was determined by body plethysmography. Subsequently, lung histological changes were quantified. rHuKGF induced a transient proliferation of alveolar and bronchiolar epithelial cells. The extent of type II cell hyperplasia was significantly correlated with a transient reduction in tidal volume and an increase in breathing frequency. In addition, quasi-static compliance, total lung capacity, and vital capacity were reduced after rHuKGF instillation, suggesting the development of a transitory restrictive lung disorder. Moreover, reduced expiratory flow rates and forced expiratory volumes, as well as increased functional residual capacity after rHuKGF but not vehicle, suggest obstructive lung function changes. In conclusion, the induction of alveolar and bronchiolar epithelial cell proliferation by KGF is paralleled by moderate functional consequences that should be taken into account when the therapeutic potential of KGF is tested.


1994 ◽  
Vol 267 (5) ◽  
pp. L498-L507 ◽  
Author(s):  
N. Khalil ◽  
R. N. O'Connor ◽  
K. C. Flanders ◽  
W. Shing ◽  
C. I. Whitman

Three isoforms of transforming growth factor-beta (TGF-beta) are found in mammalian cells and are potent regulators of inflammation, connective tissue synthesis, cellular proliferation, and differentiation. To determine the distribution and regulation of TGF-beta isoforms during pulmonary injury, a rat model of bleomycin-induced lung inflammation and repair was used. Using immunohistochemistry, we demonstrate that TGF-beta 2 and TGF-beta 3 were localized to alveolar macrophages as well as epithelial and smooth muscle cells of both normal rat lungs and rat lungs obtained at all time intervals after bleomycin administration. Early in bleomycin-induced lung injury, when there is active proliferation of type II alveolar epithelial cells, there was an increase in the number of type II alveolar epithelial cells isolated per lung and an increase in DNA synthesis by explanted type II alveolar epithelial cells. At this time, the secretion of biologically active TGF-beta 1–3, which are potent inhibitors of epithelial cell proliferation, was decreased. However, the secretion of TGF-beta 1–3 activity was markedly increased later in the injury response and coincided with a reduction in the number of type II alveolar epithelial cells isolated per lung and DNA synthesis in vitro. Furthermore, the addition of TGF-beta 1, 2, and 3 to cultures of actively proliferating type II alveolar epithelial cells resulted in inhibition of [3H]thymidine incorporation, whereas, in the presence of anti-TGF-beta 1-3 antibody, there was an increase in [3H]thymidine incorporation. Our findings suggest that altered secretion of TGF-beta 1-3 activity by type II alveolar epithelial cells during bleomycin-induced lung injury may regulate pulmonary alveolar epithelial cell proliferation during injury and repair phases.


2015 ◽  
Vol 226 (3) ◽  
pp. 135-143 ◽  
Author(s):  
Tatiana Dorfman ◽  
Yulia Pollak ◽  
Rima Sohotnik ◽  
Arnold G Coran ◽  
Jacob Bejar ◽  
...  

The Wnt/β-catenin signaling cascade is implicated in the control of stem cell activity, cell proliferation, and cell survival of the gastrointestinal epithelium. Recent evidence indicates that the Wnt/β-catenin pathway is activated under diabetic conditions. The purpose of this study was to evaluate the role of Wnt/β-catenin signaling during diabetes-induced enteropathy in a rat model. Male rats were divided into three groups: control rats received injections of vehicle; diabetic rats received injections of one dose of streptozotocin (STZ); and diabetic–insulin rats received injections of STZ and were treated with insulin given subcutaneously at a dose of 1 U/kg twice daily. Rats were killed on day 7. Wnt/β-catenin-related genes and expression of proteins was determined using real-time PCR, western blotting, and immunohistochemistry. Among 13 genes identified by real-time PCR, seven genes were upregulated in diabetic rats compared with control animals including the target genes c-Myc and Tcf4. Diabetic rats also showed a significant increase in β-catenin protein compared with control animals. Treatment of diabetic rats attenuated the stimulating effect of diabetes on intestinal cell proliferation and Wnt/β-catenin signaling. In conclusion, enhanced intestinal epithelial cell proliferation in diabetic rats correlates with β-catenin accumulation.


Sign in / Sign up

Export Citation Format

Share Document