scholarly journals Fine-scale genetic mapping of a hybrid sterility factor between Drosophila simulans and D. mauritiana: The varied and elusive functions of "speciation genes".

2010 ◽  
Vol 10 (1) ◽  
pp. 385 ◽  
Author(s):  
Luciana O Araripe ◽  
Horacio Montenegro ◽  
Bernardo Lemos ◽  
Daniel L Hartl
2021 ◽  
Vol 12 ◽  
Author(s):  
Daven C. Presgraves ◽  
Colin D. Meiklejohn

The three fruitfly species of the Drosophila simulans clade— D. simulans, D. mauritiana, and D. sechellia— have served as important models in speciation genetics for over 40 years. These species are reproductively isolated by geography, ecology, sexual signals, postmating-prezygotic interactions, and postzygotic genetic incompatibilities. All pairwise crosses between these species conform to Haldane’s rule, producing fertile F1 hybrid females and sterile F1 hybrid males. The close phylogenetic proximity of the D. simulans clade species to the model organism, D. melanogaster, has empowered genetic analyses of their species differences, including reproductive incompatibilities. But perhaps no phenotype has been subject to more continuous and intensive genetic scrutiny than hybrid male sterility. Here we review the history, progress, and current state of our understanding of hybrid male sterility among the D. simulans clade species. Our aim is to integrate the available information from experimental and population genetics analyses bearing on the causes and consequences of hybrid male sterility. We highlight numerous conclusions that have emerged as well as issues that remain unresolved. We focus on the special role of sex chromosomes, the fine-scale genetic architecture of hybrid male sterility, and the history of gene flow between species. The biggest surprises to emerge from this work are that (i) genetic conflicts may be an important general force in the evolution of hybrid incompatibility, (ii) hybrid male sterility is polygenic with contributions of complex epistasis, and (iii) speciation, even among these geographically allopatric taxa, has involved the interplay of gene flow, negative selection, and positive selection. These three conclusions are marked departures from the classical views of speciation that emerged from the modern evolutionary synthesis.


2012 ◽  
Vol 94 (1) ◽  
pp. 1-7 ◽  
Author(s):  
PIERRE R. GÉRARD ◽  
DAVEN C. PRESGRAVES

SummaryIntrinsic postzygotic reproductive isolation is thought to result from the substitution of multiple harmless or beneficial genetic differences between species that are incidentally deleterious when combined in species hybrids, causing hybrid sterility or inviability. Genetic variability for hybrid sterility or inviability phenotypes is, however, rarely assessed in natural populations. Here, we assess variation for Drosophila simulans-encoded maternal factor(s) that cause lethality in D. simulans–Drosophila melanogaster F1 hybrid females. First, we survey genetic variability in the strength of D. simulans-mediated maternal effect hybrid lethality among 37 geographic and laboratory isolates. We find abundant variability in the strength of maternal effect hybrid lethality, ranging from complete lethality to none. Second, we assess maternal effect hybrid lethality for a subset of wild isolates made heterozygous with two so-called hybrid rescue strains. The results suggest that the D. simulans maternal effect hybrid lethality involves a diversity of alleles and/or multiple loci.


2009 ◽  
Vol 91 (3) ◽  
pp. 171-182 ◽  
Author(s):  
LUIS-MIGUEL CHEVIN ◽  
HÉLOÏSE BASTIDE ◽  
CATHERINE MONTCHAMP-MOREAU ◽  
FRÉDÉRIC HOSPITAL

SummaryFine scale analyses of signatures of selection allow assessing quantitative aspects of a species' evolutionary genetic history, such as the strength of selection on genes. When several selected loci lie in the same genomic region, their epistatic interactions may also be investigated. Here, we study how the neutral polymorphism pattern was shaped by two close recombining loci that cause ‘sex-ratio’ meiotic drive in Drosophila simulans, as an example of strong selection with potentially strong epistasis. We compare the polymorphism data observed in a natural population with the results of forward stochastic simulations under several contexts of epistasis between the candidate loci for the drive. We compute the likelihood of different possible scenarios, in order to determine which configuration is most consistent with the data. Our results highlight that fine scale analyses of well-chosen candidate genomic regions provide information-rich data that can be used to investigate the genotype–phenotype–fitness map, which can hardly be studied in genome-wide analyses. We also emphasize that initial conditions and time of observation (here, time after the interruption of a partial selective sweep) are crucial parameters in the interpretation of real data, while these are often overlooked in theoretical studies.


Sign in / Sign up

Export Citation Format

Share Document