scholarly journals Application of quantitative second-line drug susceptibility testing at a multidrug-resistant tuberculosis hospital in Tanzania

2013 ◽  
Vol 13 (1) ◽  
Author(s):  
Stellah G Mpagama ◽  
Eric R Houpt ◽  
Suzanne Stroup ◽  
Happiness Kumburu ◽  
Jean Gratz ◽  
...  
2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
Yong Chen ◽  
Zhengan Yuan ◽  
Xin Shen ◽  
Jie Wu ◽  
Zheyuan Wu ◽  
...  

Introduction. Second-line antituberculosis drugs (SLDs) are used for treating multidrug-resistant tuberculosis (MDR-TB). Prolonged delays before confirming MDR-TB with drug susceptibility testing (DST) could result in transmission of drug-resistant strains and inappropriate use of SLDs, thereby increasing the risk of resistance to SLDs. This study investigated the diagnostic delay in DST and prevalence of baseline SLD resistance in Shanghai and described the distribution of SLD resistance with varied delays to DST.Methods. All registered patients from 2011 to 2013 in Shanghai were enrolled. Susceptibility to ofloxacin, amikacin, kanamycin, and capreomycin was tested. Total delay in DST completion was measured from the onset of symptoms to reporting DST results.Results. Resistance to SLDs was tested in 217 of the 276 MDR-TB strains, with 118 (54.4%) being resistant to at least one of the four SLDs. The median total delay in DST was 136 days. Patients with delay longer than median days were roughly twice more likely to have resistance to at least one SLD (OR 2.22, 95% CI 1.19–4.11).Conclusions. During prolonged delay in DST, primary and acquired resistance to SLDs might occur more frequently. Rapid diagnosis of MDR-TB, improved nosocomial infection controls, and regulated treatment are imperative to prevent SLD resistance.


2019 ◽  
Vol 45 (2) ◽  
Author(s):  
Angela Pires Brandao ◽  
Juliana Maira Watanabe Pinhata ◽  
Rosangela Siqueira Oliveira ◽  
Vera Maria Neder Galesi ◽  
Helio Hehl Caiaffa-Filho ◽  
...  

ABSTRACT Objective: To evaluate the rapid diagnosis of multidrug-resistant tuberculosis, by using a commercial line probe assay for rifampicin and isoniazid detection (LPA-plus), in the routine workflow of a tuberculosis reference laboratory. Methods: The LPA-plus was prospectively evaluated on 341 isolates concurrently submitted to the automated liquid drug susceptibility testing system. Results: Among 303 phenotypically valid results, none was genotypically rifampicin false-susceptible (13/13; 100% sensitivity). Two rifampicin-susceptible isolates harboured rpoB mutations (288/290; 99.3% specificity) which, however, were non-resistance-conferring mutations. LPA-plus missed three isoniazid-resistant isolates (23/26; 88.5% sensitivity) and detected all isoniazid-susceptible isolates (277/277; 100% specificity). Among the 38 (11%) invalid phenotypic results, LPA-plus identified 31 rifampicin- and isoniazid-susceptible isolates, one isoniazid-resistant and six as non-Mycobacterium tuberculosis complex. Conclusions: LPA-plus showed excellent agreement (≥91%) and accuracy (≥99%). Implementing LPA-plus in our setting can speed up the diagnosis of multidrug-resistant tuberculosis, yield a significantly higher number of valid results than phenotypic drug susceptibility testing and provide further information on the drug-resistance level.


Sign in / Sign up

Export Citation Format

Share Document