scholarly journals Vector control programs in Saint Johns County, Florida and Guayas, Ecuador: successes and barriers to integrated vector management

2014 ◽  
Vol 14 (1) ◽  
Author(s):  
Diana P Naranjo ◽  
Whitney A Qualls ◽  
Hugo Jurado ◽  
Juan C Perez ◽  
Rui-De Xue ◽  
...  
2021 ◽  
Vol 37 (4) ◽  
pp. 242-249
Author(s):  
Eva A. Buckner ◽  
Katie F. Williams ◽  
Samantha Ramirez ◽  
Constance Darrisaw ◽  
Juliana M. Carrillo ◽  
...  

ABSTRACT Aedes aegypti is the predominant vector of dengue, chikungunya, and Zika viruses. This mosquito is difficult to control with conventional methods due to its container-inhabiting behavior and resistance to insecticides. Autodissemination of pyriproxyfen (PPF), a potent larvicide, has shown promise as an additional tool to control Aedes species in small-scale field trials. However, few large-scale field evaluations have been conducted. We undertook a 6-month-long large-scale field study to compare the effectiveness and operational feasibility of using In2Care Mosquito Traps (In2Care Traps, commercially available Aedes traps with PPF and Beauveria bassiana) compared to an integrated vector management (IVM) strategy consisting of source reduction, larviciding, and adulticiding for controlling Ae. aegypti eggs, larvae, and adults. We found that while the difference between treatments was only statistically significant for eggs and larvae (P < 0.05 for eggs and larvae and P > 0.05 for adults), the use of In2Care Traps alone resulted in 60%, 57%, and 57% fewer eggs, larvae, and adults, respectively, collected from that site compared to the IVM site. However, In2Care Trap deployment and maintenance were more time consuming and labor intensive than the IVM strategy. Thus, using In2Care Traps alone as a control method for large areas (e.g., >20 ha) may be less practical for control programs with the capacity to conduct ground and aerial larviciding and adulticiding. Based on our study results, we conclude that In2Care Traps are effective at suppressing Ae. aegypti and have the most potential for use in areas without sophisticated control programs and within IVM programs to target hotspots with high population levels and/or risk of Aedes-borne pathogen transmission.


2021 ◽  
Author(s):  
Mitra SAADATIAN-ELAHI ◽  
Neal Alexander ◽  
Tim Möhlmann ◽  
Carole Langlois-Jacques ◽  
Remco Suer ◽  
...  

Abstract Background: In common with many South East Asian countries, Malaysia is endemic for dengue. Dengue control in Malaysia is currently based on reactive vector management within 24 hours of a dengue case being reported. Preventive rather than reactive vector control approaches, with combined interventions, are expected to improve the cost-effectiveness of dengue control programs. The principal objective of this cluster randomized controlled trial is to quantify the effectiveness of a preventive integrated vector management (IVM) strategy on the incidence of dengue as compared to routine vector control efforts. Methods: The trial is conducted in randomly allocated low and medium cost clusters located in the Federal Territory of Kuala Lumpur and Putrajaya. The IVM approach combines: targeted outdoor residual spraying with K-Othrine Polyzone, deployment of mosquito traps as auto-dissemination devices, and community engagement activities. The trial includes 280 clusters randomly allocated in a 1:1 ratio. The clusters receive either the preventive IVM in addition to the routine vector control activities, or the routine vector control activities only. Epidemiological data from monthly confirmed dengue cases during the study period will be obtained from the Vector Borne Disease Sector, Malaysian Ministry of Health e-Dengue surveillance system. Entomological surveillance data will be collected in 12 clusters randomly selected from each arm. To measure the effectiveness of the IVM approach on dengue incidence, a negative binomial regression model will be used to compare the incidence between control and intervention clusters. To quantify the effect of the interventions on the main entomological outcome, ovitrap index, a modified ordinary least squares regression model using a robust standard error estimator will be used. Discussion: Considering the ongoing expansion of dengue burden in Malaysia, setting up proactive control strategies is critical. Despite some limitations of the trial such as the use of passive surveillance to identify cases the results will be informative for a better understanding of effectiveness of proactive IVM approach in the control of dengue. Evidence from this trial may help justify investment in preventive IVM approaches as preferred to reactive case management strategies. Trial registration: ISRCTN, ISRCTN81915073, retrospectively registered on 17 April 2020 (https://doi.org/10.1186/ISRCTN81915073)


Author(s):  
Ricardo E. Gürtler ◽  
Zaida E. Yadon

Abstract This article provides an overview of three research projects which designed and implemented innovative interventions for Chagas disease vector control in Bolivia, Guatemala and Mexico. The research initiative was based on sound principles of community-based ecosystem management (ecohealth), integrated vector management, and interdisciplinary analysis. The initial situational analysis achieved a better understanding of ecological, biological and social determinants of domestic infestation. The key factors identified included: housing quality; type of peridomestic habitats; presence and abundance of domestic dogs, chickens and synanthropic rodents; proximity to public lights; location in the periphery of the village. In Bolivia, plastering of mud walls with appropriate local materials and regular cleaning of beds and of clothes next to the walls, substantially decreased domestic infestation and abundance of the insect vector Triatoma infestans. The Guatemalan project revealed close links between house infestation by rodents and Triatoma dimidiata, and vector infection with Trypanosoma cruzi. A novel community-operated rodent control program significantly reduced rodent infestation and bug infection. In Mexico, large-scale implementation of window screens translated into promising reductions in domestic infestation. A multi-pronged approach including community mobilisation and empowerment, intersectoral cooperation and adhesion to integrated vector management principles may be the key to sustainable vector and disease control in the affected regions.


2021 ◽  
Vol 8 ◽  
pp. 204993612199765
Author(s):  
Gabriel Parra-Henao ◽  
Giovanini Coelho ◽  
José Pablo Escobar ◽  
Guillermo Gonzalvez ◽  
Haroldo Bezerra

2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Emmanuel Chanda ◽  
Kumar S. Baboo ◽  
Cecilia J. Shinondo

Globalization and urbanization with their inherent developmental activities and ecological transformations impact on malaria epidemiology. Entomological factors involved in malaria transmission in periurban Lusaka were assessed prior to vector control reintroduction. Data was collected through standard entomological and epidemiological protocols and a pretested structured questionnaire. Larval habitats were characterized as transient (43%), semipermanent (36%), and permanent (21%).Anopheles arabiensisandAn. gambiae ss.were the only vectors identified. A shift in vector population was noted, with the later outnumbering the former.Plasmodium falciparummonoinfection rates were 25.6% (95% CI: 20.9–30.7) (n=297). Parasitaemia was 31.8% (95% CI: 23.2–42.2), 25.7% (95% CI: 13.5–41.3), and 23.3% (95% CI: 17.4–29.6) in under 5, 5 to 14, and above 15 age groups, respectively. Low knowledge levels on vector control tools with an average of 7 residents per household were also observed. This study confirmed a local malaria transmission paradigm. The epidemiology necessitated deployment of an integrated vector management strategy with intensified information education and communication.


2019 ◽  
Vol 18 (1) ◽  
Author(s):  
Shadreck Sande ◽  
Moses Zimba ◽  
David Nyasvisvo ◽  
Munyaradzi Mukuzunga ◽  
Emmanuel H. Kooma ◽  
...  

Abstract Background This paper outlines Zimbabwe’s potential readiness in harnessing integrated vector management (IVM) strategy for enhanced control of vector-borne diseases. The objective is to provide guidance for the country in the implementation of the national IVM strategy in order to make improvements required in thematic areas of need. The paper also assesses the existing opportunities and gaps to promote and adopt the approach as a national policy. Main text Despite recent gains in combating vector-borne diseases, especially malaria, management of vector control programmes still remains insecticide-based and vertical in nature. Therefore, concerns have been raised on whether the current long-standing conventional vector control strategy still remains with sufficient action to continue to break the transmission cycle to the levels of elimination. This is so, given the continuous dwindling resources for vector control, changes in vector behaviour, the emergence of resistance to medicines and insecticides, climate change, environmental degradation, as well as diversity in ecology, breeding habitats, and community habits. Cognizant of all that, elements of a surveillance-driven IVM approach are rapidly needed to move vector control interventions a step further. These include advocacy, policy formulation, capacity building, public and private partnerships, community engagement, and increasingly basing decisions on local evidence. Understanding the existing opportunities and gaps, and the recognition that some elements of IVM are already imbedded in the current health programmes is important to encourage stakeholders to promptly support its implementation. Leveraging on the existing opportunities, combined with sufficient advocacy, IVM could easily be accepted by the Zimbabwe government as part of a wider integrated disease management strategy. The strategy could represent an excellent breakthrough to establish much needed intra and inter-sectoral dialogue, and coordination for improved vector-borne disease prevention. Conclusions After synthesis of the opportunities and challenges clearly presented, it was concluded that it is imperative for Zimbabwe to adopt and implement IVM strategy that is informed by work already done, while addressing the bottlenecks. The significance of refocusing for improved disease prevention that has the potential to accomplish elimination of not only malaria but all vector borne diseases much earlier than anticipated under the existing vector control system is underscored.


Trials ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Mitra Saadatian-Elahi ◽  
Neal Alexander ◽  
Tim Möhlmann ◽  
Carole Langlois-Jacques ◽  
Remco Suer ◽  
...  

Abstract Background In common with many South East Asian countries, Malaysia is endemic for dengue. Dengue control in Malaysia is currently based on reactive vector management within 24 h of a dengue case being reported. Preventive rather than reactive vector control approaches, with combined interventions, are expected to improve the cost-effectiveness of dengue control programs. The principal objective of this cluster randomized controlled trial is to quantify the effectiveness of a preventive integrated vector management (IVM) strategy on the incidence of dengue as compared to routine vector control efforts. Methods The trial is conducted in randomly allocated clusters of low- and medium-cost housing located in the Federal Territory of Kuala Lumpur and Putrajaya. The IVM approach combines: targeted outdoor residual spraying with K-Othrine Polyzone, deployment of mosquito traps as auto-dissemination devices, and community engagement activities. The trial includes 300 clusters randomly allocated in a 1:1 ratio. The clusters receive either the preventive IVM in addition to the routine vector control activities or the routine vector control activities only. Epidemiological data from monthly confirmed dengue cases during the study period will be obtained from the Vector Borne Disease Sector, Malaysian Ministry of Health e-Dengue surveillance system. Entomological surveillance data will be collected in 12 clusters randomly selected from each arm. To measure the effectiveness of the IVM approach on dengue incidence, a negative binomial regression model will be used to compare the incidence between control and intervention clusters. To quantify the effect of the interventions on the main entomological outcome, ovitrap index, a modified ordinary least squares regression model using a robust standard error estimator will be used. Discussion Considering the ongoing expansion of dengue burden in Malaysia, setting up proactive control strategies is critical. Despite some limitations of the trial such as the use of passive surveillance to identify cases, the results will be informative for a better understanding of effectiveness of proactive IVM approach in the control of dengue. Evidence from this trial may help justify investment in preventive IVM approaches as preferred to reactive case management strategies. Trial registration ISRCTN ISRCTN81915073. Retrospectively registered on 17 April 2020.


Sign in / Sign up

Export Citation Format

Share Document