scholarly journals Extended flow cytometry characterization of normal bone marrow progenitor cells by simultaneous detection of aldehyde dehydrogenase and early hematopoietic antigens: implication for erythroid differentiation studies

2008 ◽  
Vol 8 (1) ◽  
pp. 13 ◽  
Author(s):  
Peppino Mirabelli ◽  
Rosa Di Noto ◽  
Catia Lo Pardo ◽  
Paolo Morabito ◽  
Giovanna Abate ◽  
...  
Blood ◽  
1989 ◽  
Vol 74 (6) ◽  
pp. 1923-1928 ◽  
Author(s):  
K Bhalla ◽  
M Birkhofer ◽  
GR Li ◽  
S Grant ◽  
W MacLaughlin ◽  
...  

Abstract Bone marrow cytotoxicity of 3′-azido-3′-deoxythymidine (AZT), an anti- human immunodeficiency virus (anti-HIV) drug, has been attributed to deoxyribonucleotide pool perturbations that might result in impaired DNA synthesis in normal bone marrow elements. We examined, in vitro, the effect of high, but clinically achievable and nontoxic, concentrations of 2′-deoxycytidine (dCyd) (greater than or equal to 100 mumol/L) on high-dose AZT mediated growth inhibition and intracellular biochemical perturbations in normal bone marrow progenitor cells. Colony formation by bone marrow progenitor cells in semisolid medium was significantly protected by dCyd against the inhibitory effects of co-administered, high concentrations of AZT (10 mumol/L). Also, dCyd significantly corrected AZT mediated depletion of intracellular thymidine triphosphate (dTTP) and dCyd triphosphate (dCTP) levels in normal bone marrow mononuclear cells (BMMC). Moreover, dCyd reduced the intracellular accumulation of AZT triphosphate (AZT-TP) and its DNA incorporation in BMMC. In contrast, co-administration of dCyd (100 mumol/L to 1 mmol/L) did not reverse AZT (10 mumol/L) mediated suppression of HIV infectivity in HUT-102 cells in culture, although a partial reduction in intracellular AZT-TP pools and its DNA incorporation as well as a correction of AZT mediated depletion of dTTP and dCTP pools was observed in these cells. These studies suggest that dCyd at high concentrations might ameliorate the bone marrow cytotoxicity of high-dose AZT without impairing its anti-HIV effect.


Blood ◽  
1989 ◽  
Vol 74 (6) ◽  
pp. 1923-1928
Author(s):  
K Bhalla ◽  
M Birkhofer ◽  
GR Li ◽  
S Grant ◽  
W MacLaughlin ◽  
...  

Bone marrow cytotoxicity of 3′-azido-3′-deoxythymidine (AZT), an anti- human immunodeficiency virus (anti-HIV) drug, has been attributed to deoxyribonucleotide pool perturbations that might result in impaired DNA synthesis in normal bone marrow elements. We examined, in vitro, the effect of high, but clinically achievable and nontoxic, concentrations of 2′-deoxycytidine (dCyd) (greater than or equal to 100 mumol/L) on high-dose AZT mediated growth inhibition and intracellular biochemical perturbations in normal bone marrow progenitor cells. Colony formation by bone marrow progenitor cells in semisolid medium was significantly protected by dCyd against the inhibitory effects of co-administered, high concentrations of AZT (10 mumol/L). Also, dCyd significantly corrected AZT mediated depletion of intracellular thymidine triphosphate (dTTP) and dCyd triphosphate (dCTP) levels in normal bone marrow mononuclear cells (BMMC). Moreover, dCyd reduced the intracellular accumulation of AZT triphosphate (AZT-TP) and its DNA incorporation in BMMC. In contrast, co-administration of dCyd (100 mumol/L to 1 mmol/L) did not reverse AZT (10 mumol/L) mediated suppression of HIV infectivity in HUT-102 cells in culture, although a partial reduction in intracellular AZT-TP pools and its DNA incorporation as well as a correction of AZT mediated depletion of dTTP and dCTP pools was observed in these cells. These studies suggest that dCyd at high concentrations might ameliorate the bone marrow cytotoxicity of high-dose AZT without impairing its anti-HIV effect.


1995 ◽  
Vol 181 (5) ◽  
pp. 1805-1815 ◽  
Author(s):  
J P Lévesque ◽  
D I Leavesley ◽  
S Niutta ◽  
M Vadas ◽  
P J Simmons

Cytokines are known to be important regulators of normal hemopoiesis, acting in concert with components of the bone marrow microenvironment. Interactions with this microenvironment are known to regulate the proliferation, differentiation, and homing of hemopoietic progenitor (CD34+) cells. Adhesive interactions with the extracellular matrix retain CD34+ cells in close proximity to cytokines, but may also provide important costimulatory signals. Thus, the functional states of adhesion receptors are critical properties of CD34+ cells, but the physiological mechanisms responsible for regulating functional properties of cell adhesion receptors on primitive hemopoietic cells are still unknown. We confirm that the integrins very late antigen (VLA)-4 and VLA-5 are expressed on the CD34+ cell lines MO7e, TF1, and on normal bone marrow CD34+ progenitor cells, but in a low affinity state, conferring on them a weak adhesive phenotype on fibronectin (Fn). Herein, we show that the cytokines interleukin (IL)-3, granulocyte-macrophage CSF (GM-CSF), and KIT ligand (KL) are physiological activators of VLA-4 and VLA-5 expressed by MO7e, TF1, and normal bone marrow CD34+ progenitor cells. Cytokine-stimulated adhesion on Fn is dose dependent and transient, reaching a maximum between 15 and 30 min and returning to basal levels after 2 h. This cytokine-dependent activation is specific for VLA-4 and VLA-5, since activation of other beta 1 integrins was not observed. The addition of second messenger antagonists staurosporine and W7 abolished all cytokine-stimulated adhesion to Fn. In contrast, genistein inhibited KL-stimulated adhesion, but failed to inhibit GM-CSF- and IL-3-stimulated adhesion. Our data suggest that cytokines GM-CSF and IL-3 specifically stimulate beta 1 integrin function via an "inside-out" mechanism involving protein kinase activity, while KL stimulates integrin activity through a similar, but initially distinct, pathway via the KIT tyrosine-kinase. Thus, in addition to promoting the survival, proliferation, and development of hemopoietic progenitors, cytokines also regulate adhesive interactions between progenitor cells and the bone marrow microenvironment by modifying the functional states of specific integrins. These data are of importance in understanding the fundamental processes of beta 1 integrin activation and cellular response to mitogenic cytokines as well as on the clinical setting where cytokines induce therapeutic mobilization of hematopoietic progenitors.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 4871-4871
Author(s):  
Catherine Claude Martin ◽  
Chantal Jayat-Vignoles ◽  
Jean-Luc Faucher ◽  
Thaddeus George ◽  
Vidya Venkatachalam ◽  
...  

Abstract The ImageStream technology performs high speed acquisition of brightfield, laser scatter and up to four fluorescent images per cell for several thousands of cells in suspension, thereby enabling simultaneous immunophenotyping and morphology-based measurements. This is the only technology combining cytology and flow cytometry in one single platform. Our aim was to study normal and tumour cells of the haematopoietic lineage with this new technology in order to improve diagnosis of haematological disorders. We have defined cytomorphological criteria of normal bone marrow (n=4) and circulating blood cells (n=40). Cells were multi-colour labelled with both DRAQ5 nuclear stain and CD45 ECD-mAb, and additionally labeled with a combination of mAbs against either CD3/CD19, CD11b/CD16, CD14/CRTH2, or CD71/CD235. Results for normal cells were compared to those obtained by classical cytometry and cytology. We then applied these criteria to samples with patients with circulating leukemic cells, including 1 myelodysplatic syndrome (MDS), 1 myeloproliferative syndrome (MPS), 3 acute lymphoblastic leukaemia (ALL), 2 follicular lymphomas (FL) and 20 chronic lymphocytic lymphomas (CLL). We have created completely new quantitative cytomorphological criteria for classifying blood cells using parameters that measure cellular size and shape, nuclear to cytoplasmic area ratio, nuclear lobe count, SSC texture, the ratio between the size and the major axis of CD45, the ratio between the intensity and the compactness of SSC signal, and the intensity of DRAQ5 labelling, to name a few. Using these criteria, we have characterised normal bone marrow differentiation and normal circulating blood cells. We have obtained a perfect correlation with classical cytology and flow cytometry. Analysis of pathological samples showed that abnormal cells were recognized in all cases. We found an abnormal blast cell compartment and an abnormal monocytic differentiation branch in the case of MDS. We have also defined specific cytomorphological properties that distinguish ALL, FL and CLL tumour cells from normal cells. We also provide data that enumerates the proportion of large cells, of atypical CLL cells and of cells in the G2/M phase. Altogether, these results show that a technology combining cytology and flow cytometry in a single platform leads to the discovery of completely new and quantitative cytomorphological parameters defining each stage of normal cell and each category of abnormal cells of the haematopoietic lineage, opening completely new perspectives for the diagnosis of haematopoietic neoplasms.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 768-768 ◽  
Author(s):  
Yelena Kovtun ◽  
Gregory Jones ◽  
Charlene Audette ◽  
Lauren Harvey ◽  
Baudouin Gerard ◽  
...  

Abstract Current AML therapies are effective in a subset of patients, but often lead to prolonged myelosuppression. CD123 is an attractive AML target due to its elevated expression on AML compared to normal bone marrow cells. Still, severe myelosuppression and myeloablation have been reported in preclinical studies for some CD123-targeted therapies. Here, we present a novel ADC which selectively kills CD123-positive AML cells over normal bone marrow cells. A novel humanized anti-CD123 antibody with two engineered cysteines for payload conjugation was generated. Indolinobenzodiazepine dimers, termed IGNs, were chosen as payload molecules for the antibody due to their high potency against AML cells. The IGN dimers containing mono-imines alkylate DNA, whereas the di-imine containing IGNs can both alkylate and crosslink DNA. To select an optimal IGN payload, we compared the cytotoxicity of an ADC with a mono-imine IGN (A-ADC) to one with a di-imine IGN (C-ADC) on AML cells, as well as normal bone marrow cells in vitro. Potency of the ADCs was evaluated using AML cell lines that have CD123 levels similar to patient cells and carry markers of poor prognosis (FLT3-ITD , MDR1, EVI1, DNMT3A and TP53), as well as on samples from 11 AML patients. AML cells exposed to either ADC displayed markers of DNA damage, cell cycle arrest and apoptotic cell death by flow cytometry. Both ADCs were highly cytotoxic, generating IC50 values between 0.4 to 60 pM on the cell lines in WST-8 assays and killing 90 percent of progenitors from AML patients between 2 to 46 pM in CFU assays. The C-ADC was, on average, two-fold more active than the A-ADC. The cytotoxicity of both ADCs was CD123 dependent, since masking CD123 with a competing anti-CD123 antibody reduced the potency by more than 100-fold. Toxicity of the ADCs was assessed using bone marrow cells from a healthy human donor. The cells were exposed to the ADCs at 100 pM (a concentration highly potent against all AML samples) for 72 hours, and then markers of apoptosis were detected in different cell populations by flow cytometry. Neither ADC affected the viability of monocytes, lymphocytes and multipotential progenitors, consistent with low CD123 levels in these cell populations. In contrast, an apoptotic signal was detected in myeloid progenitors, the population with the highest CD123 level, following exposure to the C-ADC, but not to the A-ADC. The toxicity of the ADCs was also tested in CFU assays on bone marrow cells from 7 healthy donors, as the assays have been reported to predict clinical myelosuppression. Surprisingly, the C-ADC was, on average, 50-fold more cytotoxic to normal myeloid progenitors than the A-ADC (40 pM vs 2,000 pM IC90 values, respectively) (Figure 1). Finally, we compared CD123 independent toxicity of the ADCs in CD-1 mice. The C-ADC showed significantly reduced tolerability, and unlike the A-ADC, was associated with delayed toxicity manifested by weight loss 30 days after administration. Based on its potent yet highly selective toxicity to AML cells and more favorable tolerability profile, the A-ADC was selected for further study, and renamed as IMGN632. To compare IMGN632 to an ADC previously approved for the treatment of AML, the potency of IMGN632 and gemtuzumab ozogamicin (GO) was tested on bone marrow cells from 11 healthy donors and 17 AML patients, including 4 relapsed/refractory and 8 with strong multidrug resistance (Figure 1). Only 6 of 17 AML samples were sensitive to GO at concentrations that did not impact normal progenitors. In contrast, AML progenitors from all 17 patients were highly sensitive to IMGN632. Importantly, normal progenitors were only affected by IMGN632 at 150-fold higher concentrations. The pronounced difference between AML and normal progenitors in their sensitivity to IMGN632 likely reflects both higher CD123 levels on AML progenitors and the lower sensitivity of normal progenitors to the mono-imine IGN payload we observed in CFU assays. In conclusion, through use of a mono-imine IGN payload, IMGN632 demonstrated potent activity in all tested AML samples at concentrations far below levels that impact normal bone marrow cells, suggesting the potential for efficacy in AML patients in the absence of or with limited myelosuppression. These findings together with strong efficacy in multiple AML xenograft models (Kovtun et al., 21st EHA congress, 2016; Adams et al., 58th ASH annual meeting, 2016) support advancing IMGN632 into clinical trials. Disclosures Kovtun: ImmunoGen, Inc.: Employment. Jones:ImmunoGen, Inc.: Employment. Audette:ImmunoGen, Inc.: Employment. Harvey:ImmunoGen, Inc.: Employment. Gerard:ImmunoGen, Inc.: Employment. Wilhelm:ImmunoGen, Inc.: Employment. Bai:ImmunoGen, Inc.: Employment. Adams:ImmunoGen, Inc.: Employment. Goldmacher:ImmunoGen, Inc.: Employment. Chari:ImmunoGen: Employment. Chittenden:ImmunoGen, Inc.: Employment.


Stem Cells ◽  
1994 ◽  
Vol 12 (2) ◽  
pp. 180-186 ◽  
Author(s):  
H. A. Zaheer ◽  
F. M. Gibson ◽  
M. Bagnara ◽  
E. C. Gordon-Smith ◽  
T. R. Rutherford

Sign in / Sign up

Export Citation Format

Share Document