scholarly journals Amiloride derivatives enhance insulin release in pancreatic islets from diabetic mice

2005 ◽  
Vol 5 (1) ◽  
Author(s):  
Subhadra C Gunawardana ◽  
W Steven Head ◽  
David W Piston
Life Sciences ◽  
2021 ◽  
Vol 272 ◽  
pp. 119250
Author(s):  
Mostafa A. Darwish ◽  
Amira M. Abo-Youssef ◽  
Basim A.S. Messiha ◽  
Ali A. Abo-Saif ◽  
Mohamed S. Abdel-Bakky

2012 ◽  
Vol 90 (3) ◽  
pp. 371-378 ◽  
Author(s):  
Menakshi Bhat Dusane ◽  
Bimba N. Joshi

The present study investigates the antidiabetogenic effects of Murraya koenigii (L.) Spr. and Ocimum tenuflorum  L. on streptozotocin-induced diabetic Swiss mice. Treatment with extracts of M. koenigii (chloroform; MKC) and O. tenuflorum (aqueous; OTA) resulted in proper glucose utilization with an increase in liver glucose-6-phosphate dehydrogenase enzyme activity, and normal glycogenesis in hepatic and muscle tissues. Pancreatic and intestinal glucosidase inhibitory activity observed with MKC and OTA treatment indicated beneficial effects in reducing postprandial hyperglycemia with concomitant improvement in glucose metabolism. The glucosidase inhibition was prolonged, even after discontinuation of MKC and OTA treatment. Normalization of plasma insulin and C-peptide levels was observed in diabetic mice, indicating endogenous insulin secretion after treatment. The histochemical and immunohistochemical analysis of pancreatic islets suggests the role of MKC and OTA in pancreatic β-cell protection and the functional pancreatic islets that produce insulin. The study demonstrates the significance of MKC and OTA in glucosidase inhibition and islet protection in the murine diabetic model. These findings suggest the potential of the extracts in adjuvant therapy for the treatment of diabetes and the possible development of potential neutraceuticals.


2005 ◽  
Vol 37 (11) ◽  
pp. 662-665 ◽  
Author(s):  
M. L. Grillo ◽  
A. P. Jacobus ◽  
R. Scalco ◽  
F. Amaral ◽  
D. O. Rodrigues ◽  
...  

Author(s):  
Mirian Bonifacio ◽  
Izabelle Dias Benfato ◽  
Matheus de Almeida Cruz ◽  
Daniele Correia de Sales ◽  
Isabella Liba Pandolfo ◽  
...  

1990 ◽  
Vol 258 (6) ◽  
pp. E975-E984 ◽  
Author(s):  
G. Z. Fadda ◽  
M. Akmal ◽  
L. G. Lipson ◽  
S. G. Massry

Indirect evidence indicates that parathyroid hormone (PTH) interacts with pancreatic islets and modulates their insulin secretion. This property of PTH has been implicated in the genesis of impaired insulin release in chronic renal failure. We examined the direct effect of PTH-(1-84) and PTH-(1-34) on insulin release using in vitro static incubation and dynamic perifusion of pancreatic islets from normal rats. Both moieties of the hormone stimulated in a dose-dependent manner glucose-induced insulin release but higher doses inhibited glucose-induced insulin release. This action of PTH was modulated by the calcium concentration in the media. The stimulatory effect of PTH was abolished by its inactivation and blocked by its antagonist [Tyr-34]bPTH-(7-34)NH2. PTH also augmented phorbol ester (TPA)-induced insulin release, stimulated adenosine 3',5'-cyclic monophosphate (cAMP) generation by pancreatic islets, and significantly increased (+50 +/- 2.7%, P less than 0.01) their cytosolic calcium. Verapamil inhibited the stimulatory effect of PTH on insulin release. The data show that 1) pancreatic islets are a PTH target and may have PTH receptors, 2) stimulation of glucose-induced insulin release by PTH is mediated by a rise in cytosolic calcium, 3) stimulation of cAMP production by PTH and a potential indirect activation of protein kinase C by PTH may also contribute to the stimulatory effect on glucose-induced insulin release, and 4) this action of PTH requires calcium in incubation or perifusion media.


2007 ◽  
Vol 192 (2) ◽  
pp. 389-394 ◽  
Author(s):  
Nguyen Khanh Hoa ◽  
Åke Norberg ◽  
Rannar Sillard ◽  
Dao Van Phan ◽  
Nguyen Duy Thuan ◽  
...  

We recently showed that phanoside, a gypenoside isolated from the plant Gynostemma pentaphyllum, stimulates insulin secretion from rat pancreatic islets. To study the mechanisms by which phanoside stimulates insulin secretion. Isolated pancreatic islets of normal Wistar (W) rats and spontaneously diabetic Goto-Kakizaki (GK) rats were batch incubated or perifused. At both 3.3 and 16.7 mM glucose, phanoside stimulated insulin secretion several fold in both W and diabetic GK rat islets. In perifusion of W islets, phanoside (75 and 150 μM) dose dependently increased insulin secretion that returned to basal levels when phanoside was omitted. When W rat islets were incubated at 3.3 mM glucose with 150 μM phanoside and 0.25 mM diazoxide to keep K-ATP channels open, insulin secretion was similar to that in islets incubated in 150 μM phanoside alone. At 16.7 mM glucose, phanoside-stimulated insulin secretion was reduced in the presence of 0.25 mM diazoxide (P<0.01). In W islets depolarized by 50 mM KCl and with diazoxide, phanoside stimulated insulin release twofold at 3.3 mM glucose but did not further increase the release at 16.7 mM glucose. When using nimodipine to block L-type Ca2+ channels in B-cells, phanoside-induced insulin secretion was unaffected at 3.3 mM glucose but decreased at 16.7 mM glucose (P<0.01). Pretreatment of islets with pertussis toxin to inhibit exocytotic Ge-protein did not affect insulin response to 150 μM phanoside. Phanoside stimulated insulin secretion from Wand GK rat islets. This effect seems to be exerted distal to K-ATP channels and L-type Ca2+ channels, which is on the exocytotic machinery of the B-cells.


2000 ◽  
Vol 275 (45) ◽  
pp. 34841-34844 ◽  
Author(s):  
Behrous Davani ◽  
Akhtar Khan ◽  
Malin Hult ◽  
Eva Mårtensson ◽  
Sam Okret ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document