scholarly journals Delayed formation of zero-valent selenium nanoparticles by Bacillus mycoides SeITE01 as a consequence of selenite reduction under aerobic conditions

2014 ◽  
Vol 13 (1) ◽  
pp. 35 ◽  
Author(s):  
Silvia Lampis ◽  
Emanuele Zonaro ◽  
Cristina Bertolini ◽  
Paolo Bernardi ◽  
Clive S Butler ◽  
...  
2020 ◽  
Vol 58 ◽  
pp. 17-24 ◽  
Author(s):  
Anna V. Tugarova ◽  
Polina V. Mamchenkova ◽  
Vitaly A. Khanadeev ◽  
Alexander A. Kamnev

Agriculture ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 610
Author(s):  
Faheem Ahmed ◽  
Sourabh Dwivedi ◽  
Nagih M. Shaalan ◽  
Shalendra Kumar ◽  
Nishat Arshi ◽  
...  

The presence of heavy metals in increased concentrations in the environment has become a global environmental concern. This rapid increase in heavy metals in the environment is attributed to enhanced industrial and mining activities. Metal ions possess a lengthy half-life and property to bioaccumulate, are non-biodegradable and, thus, are a threat to the human health. A number of conventional spectroscopic and chromatographic techniques are being used for the detection of heavy metals, but these suffer from various limitations. Nano-based sensors have emerged as potential candidates for the sensitive and selective detection of heavy metals. Thus, the present study was focused on the synthesis of selenium nanoparticles (SeNPs) by using selenite-reducing bacteria in the development of a heavy metal toxicity biosensor. During the biosynthesis of selenium nanoparticles, supernatants of the overnight-grown culture were treated with Na2SeO32− and incubated for 24 h at 37 °C. The as-synthesized nanoparticles were characterized by UV–Vis spectroscopy, X-ray diffraction (XRD), Fourier transform infrared (FTIR) and transmission electron microscopy (TEM) analyses. XRD and TEM results confirmed the formation of SeNPs in sizes ranging from 35 to 40 nm, with face-centered cubic (FCC) structures. The bioreduction process and validation of the formation of SeNPs was further confirmed by FTIR studies. The reduction in the biosynthesis of SeNPs using bacterial metabolite due to heavy metal cytotoxicity was analyzed by the colorimetric bioassay (SE Assay). The inhibition of selenite reduction and loss of red color in the presence of heavy metals may serve as a biosensor for heavy metal toxicity analysis. Thus, this biosensor development is aimed at improving the sensitivity and specificity of analytic detection.


2021 ◽  
Vol 12 ◽  
Author(s):  
Greta Baggio ◽  
Ryan A. Groves ◽  
Roberto Chignola ◽  
Elena Piacenza ◽  
Alessandro Presentato ◽  
...  

Bacillus mycoides SeITE01 is an environmental isolate that transforms the oxyanion selenite (SeO32−) into the less bioavailable elemental selenium (Se0) forming biogenic selenium nanoparticles (Bio-SeNPs). In the present study, the reduction of sodium selenite (Na2SeO3) by SeITE01 strain and the effect of SeO32− exposure on the bacterial cells was examined through untargeted metabolomics. A time-course approach was used to monitor both cell pellet and cell free spent medium (referred as intracellular and extracellular, respectively) metabolites in SeITE01 cells treated or not with SeO32−. The results show substantial biochemical changes in SeITE01 cells when exposed to SeO32−. The initial uptake of SeO32− by SeITE01 cells (3h after inoculation) shows both an increase in intracellular levels of 4-hydroxybenzoate and indole-3-acetic acid, and an extracellular accumulation of guanosine, which are metabolites involved in general stress response adapting strategies. Proactive and defensive mechanisms against SeO32− are observed between the end of lag (12h) and beginning of exponential (18h) phases. Glutathione and N-acetyl-L-cysteine are thiol compounds that would be mainly involved in Painter-type reaction for the reduction and detoxification of SeO32− to Se0. In these growth stages, thiol metabolites perform a dual role, both acting against the toxic and harmful presence of the oxyanion and as substrate or reducing sources to scavenge ROS production. Moreover, detection of the amino acids L-threonine and ornithine suggests changes in membrane lipids. Starting from stationary phase (24 and 48h), metabolites related to the formation and release of SeNPs in the extracellular environment begin to be observed. 5-hydroxyindole acetate, D-[+]-glucosamine, 4-methyl-2-oxo pentanoic acid, and ethanolamine phosphate may represent signaling strategies following SeNPs release from the cytoplasmic compartment, with consequent damage to SeITE01 cell membranes. This is also accompanied by intracellular accumulation of trans-4-hydroxyproline and L-proline, which likely represent osmoprotectant activity. The identification of these metabolites suggests the activation of signaling strategies that would protect the bacterial cells from SeO32− toxicity while it is converting into SeNPs.


2017 ◽  
Vol 34 ◽  
pp. 1-11 ◽  
Author(s):  
Nazanin Seyed Khoei ◽  
Silvia Lampis ◽  
Emanuele Zonaro ◽  
Kim Yrjälä ◽  
Paolo Bernardi ◽  
...  

2018 ◽  
Vol 19 (9) ◽  
pp. 2799 ◽  
Author(s):  
Yuting Wang ◽  
Xian Shu ◽  
Qing Zhou ◽  
Tao Fan ◽  
Taichu Wang ◽  
...  

In this study, a bacterial strain exhibiting high selenite (Na2SeO3) tolerance and reduction capacity was isolated from the gut of Monochamus alternatus larvae and identified as Alcaligenes faecalis Se03. The isolate exhibited extreme tolerance to selenite (up to 120 mM) when grown aerobically. In the liquid culture medium, it was capable of reducing nearly 100% of 1.0 and 5.0 mM Na2SeO3 within 24 and 42 h, respectively, leading to the formation of selenium nanoparticles (SeNPs). Electron microscopy and energy dispersive X-ray analysis demonstrated that A. faecalis Se03 produced spherical electron-dense SeNPs with an average hydrodynamic diameter of 273.8 ± 16.9 nm, localized mainly in the extracellular space. In vitro selenite reduction activity and real-time PCR indicated that proteins such as sulfite reductase and thioredoxin reductase present in the cytoplasm were likely to be involved in selenite reduction and the SeNPs synthesis process in the presence of NADPH or NADH as electron donors. Finally, using Fourier transform infrared spectroscopy, protein and carbohydrate residues were detected on the surface of the biogenic SeNPs. Based on these observations, A. faecalis Se03 has the potential to be an eco-friendly candidate for the bioremediation of selenium-contaminated soil/water and a bacterial catalyst for the biogenesis of SeNPs.


1969 ◽  
Vol 21 (03) ◽  
pp. 573-579 ◽  
Author(s):  
P Fantl

SummaryTreatment of human and dog oxalated plasma with 0.2 to 1.0 × 10−1 M 2.3-dithiopropanol (BAL) or dithiothreitol (DTT) at 2–4° C for 30 min results in the reduction of the vitamin-K dependent clotting factors II, VII, IX and X to the respective-SH derivatives. The reaction is pH dependent. Under aerobic conditions the delayed one stage prothrombin time can be partly reversed. Under anaerobic conditions a gradual prolongation of the one stage prothrombin time occurs without reversal.In very diluted plasma treated with the dithiols, prothrombin can be converted into thrombin if serum as source of active factors VII and X is added. In contrast SH factors VII, IX and X are inactive in the specific tests. Reoxidation to active factors II, VII, IX and X takes place during adsorption and elution of the SH derivatives. The experiments have indicated that not only factor II but also factors VII, IX and X have active-S-S-centres.


Sign in / Sign up

Export Citation Format

Share Document