scholarly journals Effects of immediate and delayed nutrient timing following resistance exercise on changes in mixed muscle fractional synthesis rate (FSR) in post-menopausal women participating in a weight loss program

Author(s):  
M Byrd ◽  
S Simbo ◽  
YP Jung ◽  
B Sanchez ◽  
M Cho ◽  
...  
2007 ◽  
Vol 21 (5) ◽  
Author(s):  
Melyn Galbreath ◽  
B Campbell ◽  
C Kerksick ◽  
L Taylor ◽  
C Wilborn ◽  
...  

Metabolism ◽  
2014 ◽  
Vol 63 (12) ◽  
pp. 1562-1567 ◽  
Author(s):  
Demidmaa Tuvdendorj ◽  
David L. Chinkes ◽  
John Bahadorani ◽  
Xiao-jun Zhang ◽  
Melinda Sheffield-Moore ◽  
...  

1998 ◽  
Vol 9 (8) ◽  
pp. 1474-1481
Author(s):  
M G De Sain-Van Der Velden ◽  
D J Reijngoud ◽  
G A Kaysen ◽  
M M Gadellaa ◽  
H Voorbij ◽  
...  

In patients with the nephrotic syndrome, markedly increased levels of lipoprotein(a) (Lp(a)) concentration have been frequently reported, and it has been suggested that this may contribute to the increased cardiovascular risk in these patients. The mechanism, however, is not clear. In the present study, in vivo fractional synthesis rate of Lp(a) was measured using incorporation of the stable isotope 13C valine. Under steady-state conditions, fractional synthesis rate equals fractional catabolic rate (FCR). FCR of Lp(a) was estimated in five patients with the nephrotic syndrome and compared with five control subjects. The mean plasma Lp(a) concentration in the patients (1749+/-612 mg/L) was higher than in control subjects (553+/-96 mg/L). Two patients were heterozygous for apolipoprotein(a) (range, 19 to 30 kringle IV domains), whereas all control subjects were each homozygous with regard to apolipoprotein(a) phenotype (range, 18 to 28 kringle IV domains). The FCR of Lp(a) was comparable between control subjects (0.072+/-0.032 pools/d) and patients (0.064+/-0.029 pools/d) despite the wide variance in plasma concentration. This suggests that differences in Lp(a) levels are caused by differences in synthesis rate. Indeed, the absolute synthetic rate of Lp(a) correlated directly with plasma Lp(a) concentration (P < 0.0001) in all subjects. The present results demonstrate that increased synthesis, rather than decreased catabolism, causes elevated plasma Lp(a) concentrations in the nephrotic syndrome.


2020 ◽  
Vol 46 (1) ◽  
pp. 83-88
Author(s):  
N. B. Gubergrits ◽  
N.V. Byelyayeva ◽  
T. L. Mozhyna ◽  
G. M. Lukashevich ◽  
P. G. Fomenko

After the discovery of the method of ursodeoxycholic acid’s (UDCA) synthesis and the publication of evidence confirming its ability to reduce the lithogenic properties of bile, active clinical use of UDCA began in the world. This drug, which has pleiotropic effect (choleretic, cytoprotective, immunomodulatory, antiapoptic, litholytic, hypocholesterolemic), has proven its effectiveness in the treatment various diseases: primary biliary cholangitis, intrahepatic cholestasis of pregnancy, gallstone disease. Being a tertiary bile acid, UDCA stimulates bile acid synthesis by reducing the circulating fibroblast growth factor 19 and inhibiting the activation of the farnesoid X-receptor (FXR), which leads to the induction of cholesterol-7α-hydroxylase, a key enzyme in the synthesis of bile acid de novo, mediating the conversion of cholesterol into bile acids. Changes in the formation of bile acids and cholesterol while taking UDCA intake is accompanied by activation of the main enzyme of cholesterol synthesis - 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR). Under the influence of UDCA the activity of stearoyl-Coa desaturase (SCD) in visceral white adipose tissue increases. According to studies conducted in 2019, UDCA improves lipid metabolism by regulating the activity of the ACT/mTOR signaling pathway, reduces the synthesis of cholesterol, decreases the fractional synthesis rate of cholesterol and the fractional synthesis rate of triglycerides. It has been proved that UDCA is accompanied by a decrease in the level of total cholesterol and low density lipoprotein cholesterol.


2002 ◽  
Vol 103 (5) ◽  
pp. 525-531 ◽  
Author(s):  
Hans BARLE ◽  
Anna JANUSZKIEWICZ ◽  
Lars HÅLLSTRÖM ◽  
Pia ESSÉN ◽  
Margaret A. MCNURLAN ◽  
...  

In order to investigate the immediate (i.e. within 3h) response of albumin synthesis to the administration of endotoxin, as a model of a moderate and well controlled catabolic insult, two measurements employing L-[2H5]phenylalanine were performed in 16 volunteers. One group (n = 8) received an intravenous injection of endotoxin (4ng/kg; lot EC-6) immediately after the first measurement of albumin synthesis, whereas the other group received saline. A second measurement was initiated 1h later. In the endotoxin group, the fractional synthesis rate of albumin was 6.9±0.6%/day (mean±S.D.) in the first measurement. In the second measurement, a significant increase was observed (9.6±1.2%/day; P<0.001). The corresponding values in the control group were were 6.6±0.6%/day and 7.0±0.6%/day respectively (not significant compared with first measurement and P<0.001 compared with the second measurement in the endotoxin group). The absolute synthesis rates of albumin were 148±35 and 201±49mg·kg-1·day-1 before and after endotoxin (P<0.01). In the control group, the corresponding values were 131±21 and 132±20mg·kg-1·day-1 (not significant compared with the first measurement and P<0.01 compared with the second measurement in the endotoxin group). In conclusion, these results indicate that albumin synthesis increases in the very early phase after a catabolic insult, as represented by the administration of endotoxin.


Sign in / Sign up

Export Citation Format

Share Document