scholarly journals Effect of ursodeoxycholic acid on lipid metabolism: through the prism of evidence from 2019.

2020 ◽  
Vol 46 (1) ◽  
pp. 83-88
Author(s):  
N. B. Gubergrits ◽  
N.V. Byelyayeva ◽  
T. L. Mozhyna ◽  
G. M. Lukashevich ◽  
P. G. Fomenko

After the discovery of the method of ursodeoxycholic acid’s (UDCA) synthesis and the publication of evidence confirming its ability to reduce the lithogenic properties of bile, active clinical use of UDCA began in the world. This drug, which has pleiotropic effect (choleretic, cytoprotective, immunomodulatory, antiapoptic, litholytic, hypocholesterolemic), has proven its effectiveness in the treatment various diseases: primary biliary cholangitis, intrahepatic cholestasis of pregnancy, gallstone disease. Being a tertiary bile acid, UDCA stimulates bile acid synthesis by reducing the circulating fibroblast growth factor 19 and inhibiting the activation of the farnesoid X-receptor (FXR), which leads to the induction of cholesterol-7α-hydroxylase, a key enzyme in the synthesis of bile acid de novo, mediating the conversion of cholesterol into bile acids. Changes in the formation of bile acids and cholesterol while taking UDCA intake is accompanied by activation of the main enzyme of cholesterol synthesis - 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR). Under the influence of UDCA the activity of stearoyl-Coa desaturase (SCD) in visceral white adipose tissue increases. According to studies conducted in 2019, UDCA improves lipid metabolism by regulating the activity of the ACT/mTOR signaling pathway, reduces the synthesis of cholesterol, decreases the fractional synthesis rate of cholesterol and the fractional synthesis rate of triglycerides. It has been proved that UDCA is accompanied by a decrease in the level of total cholesterol and low density lipoprotein cholesterol.

Nutrients ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 1104
Author(s):  
Cong Xie ◽  
Weikun Huang ◽  
Richard L. Young ◽  
Karen L. Jones ◽  
Michael Horowitz ◽  
...  

Bile acids are cholesterol-derived metabolites with a well-established role in the digestion and absorption of dietary fat. More recently, the discovery of bile acids as natural ligands for the nuclear farnesoid X receptor (FXR) and membrane Takeda G-protein-coupled receptor 5 (TGR5), and the recognition of the effects of FXR and TGR5 signaling have led to a paradigm shift in knowledge regarding bile acid physiology and metabolic health. Bile acids are now recognized as signaling molecules that orchestrate blood glucose, lipid and energy metabolism. Changes in FXR and/or TGR5 signaling modulates the secretion of gastrointestinal hormones including glucagon-like peptide-1 (GLP-1) and peptide YY (PYY), hepatic gluconeogenesis, glycogen synthesis, energy expenditure, and the composition of the gut microbiome. These effects may contribute to the metabolic benefits of bile acid sequestrants, metformin, and bariatric surgery. This review focuses on the role of bile acids in energy intake and body weight, particularly their effects on gastrointestinal hormone secretion, the changes in obesity and T2D, and their potential relevance to the management of metabolic disorders.


Metabolism ◽  
2014 ◽  
Vol 63 (12) ◽  
pp. 1562-1567 ◽  
Author(s):  
Demidmaa Tuvdendorj ◽  
David L. Chinkes ◽  
John Bahadorani ◽  
Xiao-jun Zhang ◽  
Melinda Sheffield-Moore ◽  
...  

1998 ◽  
Vol 9 (8) ◽  
pp. 1474-1481
Author(s):  
M G De Sain-Van Der Velden ◽  
D J Reijngoud ◽  
G A Kaysen ◽  
M M Gadellaa ◽  
H Voorbij ◽  
...  

In patients with the nephrotic syndrome, markedly increased levels of lipoprotein(a) (Lp(a)) concentration have been frequently reported, and it has been suggested that this may contribute to the increased cardiovascular risk in these patients. The mechanism, however, is not clear. In the present study, in vivo fractional synthesis rate of Lp(a) was measured using incorporation of the stable isotope 13C valine. Under steady-state conditions, fractional synthesis rate equals fractional catabolic rate (FCR). FCR of Lp(a) was estimated in five patients with the nephrotic syndrome and compared with five control subjects. The mean plasma Lp(a) concentration in the patients (1749+/-612 mg/L) was higher than in control subjects (553+/-96 mg/L). Two patients were heterozygous for apolipoprotein(a) (range, 19 to 30 kringle IV domains), whereas all control subjects were each homozygous with regard to apolipoprotein(a) phenotype (range, 18 to 28 kringle IV domains). The FCR of Lp(a) was comparable between control subjects (0.072+/-0.032 pools/d) and patients (0.064+/-0.029 pools/d) despite the wide variance in plasma concentration. This suggests that differences in Lp(a) levels are caused by differences in synthesis rate. Indeed, the absolute synthetic rate of Lp(a) correlated directly with plasma Lp(a) concentration (P < 0.0001) in all subjects. The present results demonstrate that increased synthesis, rather than decreased catabolism, causes elevated plasma Lp(a) concentrations in the nephrotic syndrome.


F1000Research ◽  
2017 ◽  
Vol 6 ◽  
pp. 2029 ◽  
Author(s):  
John YL Chiang

Bile acids are derived from cholesterol to facilitate intestinal nutrient absorption and biliary secretion of cholesterol. Recent studies have identified bile acids as signaling molecules that activate nuclear farnesoid X receptor (FXR) and membrane G protein-coupled bile acid receptor-1 (Gpbar-1, also known as TGR5) to maintain metabolic homeostasis and protect liver and other tissues and cells from bile acid toxicity. Bile acid homeostasis is regulated by a complex mechanism of feedback and feedforward regulation that is not completely understood. This review will cover recent advances in bile acid signaling and emerging concepts about the classic and alternative bile acid synthesis pathway, bile acid composition and bile acid pool size, and intestinal bile acid signaling and gut microbiome in regulation of bile acid homeostasis.


Author(s):  
Peijie Wu ◽  
Ling Qiao ◽  
Han Yu ◽  
Hui Ming ◽  
Chao Liu ◽  
...  

Cholestasis is a kind of stressful syndrome along with liver toxicity, which has been demonstrated to be related to fibrosis, cirrhosis, even cholangiocellular or hepatocellular carcinomas. Cholestasis usually caused by the dysregulated metabolism of bile acids that possess high cellular toxicity and synthesized by cholesterol in the liver to undergo enterohepatic circulation. In cholestasis, the accumulation of bile acids in the liver causes biliary and hepatocyte injury, oxidative stress, and inflammation. The farnesoid X receptor (FXR) is regarded as a bile acid–activated receptor that regulates a network of genes involved in bile acid metabolism, providing a new therapeutic target to treat cholestatic diseases. Arbutin is a glycosylated hydroquinone isolated from medicinal plants in the genus Arctostaphylos, which has a variety of potentially pharmacological properties, such as anti-inflammatory, antihyperlipidemic, antiviral, antihyperglycemic, and antioxidant activity. However, the mechanistic contributions of arbutin to alleviate liver injury of cholestasis, especially its role on bile acid homeostasis via nuclear receptors, have not been fully elucidated. In this study, we demonstrate that arbutin has a protective effect on α-naphthylisothiocyanate–induced cholestasis via upregulation of the levels of FXR and downstream enzymes associated with bile acid homeostasis such as Bsep, Ntcp, and Sult2a1, as well as Ugt1a1. Furthermore, the regulation of these functional proteins related to bile acid homeostasis by arbutin could be alleviated by FXR silencing in L-02 cells. In conclusion, a protective effect could be supported by arbutin to alleviate ANIT-induced cholestatic liver toxicity, which was partly through the FXR pathway, suggesting arbutin may be a potential chemical molecule for the cholestatic disease.


2002 ◽  
Vol 103 (5) ◽  
pp. 525-531 ◽  
Author(s):  
Hans BARLE ◽  
Anna JANUSZKIEWICZ ◽  
Lars HÅLLSTRÖM ◽  
Pia ESSÉN ◽  
Margaret A. MCNURLAN ◽  
...  

In order to investigate the immediate (i.e. within 3h) response of albumin synthesis to the administration of endotoxin, as a model of a moderate and well controlled catabolic insult, two measurements employing L-[2H5]phenylalanine were performed in 16 volunteers. One group (n = 8) received an intravenous injection of endotoxin (4ng/kg; lot EC-6) immediately after the first measurement of albumin synthesis, whereas the other group received saline. A second measurement was initiated 1h later. In the endotoxin group, the fractional synthesis rate of albumin was 6.9±0.6%/day (mean±S.D.) in the first measurement. In the second measurement, a significant increase was observed (9.6±1.2%/day; P<0.001). The corresponding values in the control group were were 6.6±0.6%/day and 7.0±0.6%/day respectively (not significant compared with first measurement and P<0.001 compared with the second measurement in the endotoxin group). The absolute synthesis rates of albumin were 148±35 and 201±49mg·kg-1·day-1 before and after endotoxin (P<0.01). In the control group, the corresponding values were 131±21 and 132±20mg·kg-1·day-1 (not significant compared with the first measurement and P<0.01 compared with the second measurement in the endotoxin group). In conclusion, these results indicate that albumin synthesis increases in the very early phase after a catabolic insult, as represented by the administration of endotoxin.


2021 ◽  
Vol 129 (Suppl_1) ◽  
Author(s):  
Amulya Lingaraju ◽  
Stephany Flores Ramos ◽  
Emily Gentry ◽  
Orit Poulsen ◽  
Pieter C Dorrestein ◽  
...  

Obstructive sleep apnea (OSA) is an independent exacerbator of cardiovascular disease (CVD). However, it is unclear how OSA or it’s characteristic components, intermittent hypoxia and hypercapnia (IHC), increase CVD risk. Our previous work has shown that IHC reproducibly changes the gut microbiome dynamics in murine models of atherosclerosis and that these changes could affect host cardiovascular physiology through bile acids and phosphocholines. In our initial targeted metabolomics approach, changes in particular bile acids, such as taurocholic acid, taurodeoxycholic acid, and muricholic acid, were associated with and were predictive of IHC exposure in atherosclerotic Ldlr-/- mice. In a more recent study, we identified the formation of novel, microbially-synthesized conjugated bile acids by the gut microbiome that are more potent farnesoid X receptor agonists than other previously described bile acids, and thus, potentially can affect atherosclerosis formation. To determine whether these novel bile acids are associated with IHC-induced atherosclerosis, we characterized luminal bile acid changes in Ldlr-/- mice in an OSA model. We hypothesize that IHC alters the amount of microbially-synthesized novel bile acids and that these bile acids are associated with IHC-induced atherosclerosis. To test this hypothesis, we subjected atherogenic diet-fed Ldlr-/- mice to either room-air (control) or IHC conditions (n=10/condition) and assessed atherosclerotic lesion formation after 12 weeks post-diet. Mice under IHC conditions had significantly higher aortic lesion formation compared to controls. Assessment of fecal bile acid metabolites indicated changes in novel bile acid levels under IHC conditions. Moreover, correlational analysis showed that these novel bile acid changes were positively correlated with atherosclerotic lesion amounts, mainly driven by IHC conditions. Our results demonstrate that bile acid changes through microbial biotransformations occur under IHC conditions and could be the mechanistic link between OSA-induced microbiome changes and atherosclerosis.


2006 ◽  
Vol 290 (3) ◽  
pp. G476-G485 ◽  
Author(s):  
Jean-François Landrier ◽  
Jyrki J. Eloranta ◽  
Stephan R. Vavricka ◽  
Gerd A. Kullak-Ublick

Bile acids are synthesized from cholesterol in the liver and are excreted into bile via the hepatocyte canalicular bile salt export pump. After their passage into the intestine, bile acids are reabsorbed in the ileum by sodium-dependent uptake across the apical membrane of enterocytes. At the basolateral domain of ileal enterocytes, bile acids are extruded into portal blood by the heterodimeric organic solute transporter OSTα/OSTβ. Although the transport function of OSTα/OSTβ has been characterized, little is known about the regulation of its expression. We show here that human OSTα/OSTβ expression is induced by bile acids through ligand-dependent transactivation of both OST genes by the nuclear bile acid receptor/farnesoid X receptor (FXR). FXR agonists induced endogenous mRNA levels of OSTα and OSTβ in cultured cells, an effect that was not discernible upon inhibition of FXR expression by small interfering RNAs. Furthermore, OST mRNAs were induced in human ileal biopsies exposed to the bile acid chenodeoxycholic acid. Reporter constructs containing OSTα or OSTβ promoters were transactivated by FXR in the presence of its ligand. Two functional FXR binding motifs were identified in the OSTα gene and one in the OSTβ gene. Targeted mutation of these elements led to reduced inducibility of both OST promoters by FXR. In conclusion, the genes encoding the human OSTα/OSTβ complex are induced by bile acids and FXR. By coordinated control of OSTα/OSTβ expression, bile acids may adjust the rate of their own efflux from enterocytes in response to changes in intracellular bile acid levels.


2000 ◽  
Vol 84 (3) ◽  
pp. 275-284 ◽  
Author(s):  
G. E. Lobley ◽  
K. D. Sinclair ◽  
C. M. Grant ◽  
L. Miller ◽  
D. Mantle ◽  
...  

Eighteen pure-bred steers (live weight 350 kg) from each of two breeds, Aberdeen Angus (AA) and Charolais (CH), were split into three equal groups (six animals each) and offered three planes of nutrition during a 20-week period. The same ration formulation was offered to all animals with amounts adjusted at 3-week intervals to give predicted average weight gains of either 1·0 kg/d (M/M group) or 1·4 kg/d (H/H group). The remaining group (M/H) were offered the same amount of ration as the M/M group until 10 weeks before slaughter when the ration was increased to H. Data on animal performance, carcass characteristics and fibre-type composition in skeletal muscle are presented elsewhere (; ). On three occasions (17, 10 and 2 weeks before slaughter) the animals were transferred to metabolism stalls for 1 week, during which total urine collection for quantification of Nτ-methylhistidine (Nτ-MeH) elimination was performed for 4 d. On the last day, animals were infused for 11 h with [2H5] phenylalanine with frequent blood sampling (to allow determination of whole-body phenylalanine flux) followed by biopsies from m. longissimus lumborum and m. vastus lateralis to determine the fractional synthesis rate of mixed muscle protein. For both breeds, the absolute amount of Nτ-MeH eliminated increased with animal age or weight (P < 0·001) and was significantly greater for CH steers, at all intake comparisons, than for AA (P < 0·001). Estimates of fractional muscle breakdown rate (FBR; calculated from Nτ-MeH elimination and based on skeletal muscle as a fixed fraction of live weight) showed an age (or weight) decline for M/M and H/H groups of both breeds (P < 0·001). FBR was greater for the H/H group (P = 0·044). The M/H group also showed a lower FBR for the first two measurement periods (both at M intake) but increased when intake was raised to H. When allowance was made for differences in lean content (calculated from fat scores and eye muscle area in carcasses at the end of period 3), there were significant differences in muscle FBR with intake (P = 0·012) but not between breed. Whole-body protein flux (WBPF; g/d) based on plasma phenylalanine kinetics increased with age or weight (P < 0·001) and was similar between breeds. The WBPF was lower for M/M compared with H/H (P < 0·001) based on either total or per kg live weight0·75. Muscle protein fractional synthesis rate (FSR) declined with age for both breeds and tended to be higher at H/H compared with M intakes (intake × period effects, P < 0·05). Changing intake from M to H caused a significant increase (P < 0·001) in FSR. The FSR values for AA were significantly greater than for CH at comparable ages (P = 0·044). Although FSR and FBR responded to nutrition, these changes in protein metabolism were not reflected in differences in meat eating quality (Sinclair et al. 2000).


Sign in / Sign up

Export Citation Format

Share Document