scholarly journals The effects of notch filtering on electrically evoked myoelectric signals and associated motor unit index estimates

2011 ◽  
Vol 8 (1) ◽  
pp. 64 ◽  
Author(s):  
Xiaoyan Li ◽  
William Z Rymer ◽  
Guanglin Li ◽  
Ping Zhou
2002 ◽  
Vol 205 (3) ◽  
pp. 359-369 ◽  
Author(s):  
James M. Wakeling ◽  
Motoshi Kaya ◽  
Genevieve K. Temple ◽  
Ian A. Johnston ◽  
Walter Herzog

SUMMARY Motor units are the functional units of muscle contraction in vertebrates. Each motor unit comprises muscle fibres of a particular fibre type and can be considered as fast or slow depending on its fibre-type composition. Motor units are typically recruited in a set order, from slow to fast, in response to the force requirements from the muscle. The anatomical separation of fast and slow muscle in fish permits direct recordings from these two fibre types. The frequency spectra from different slow and fast myotomal muscles were measured in the rainbow trout Oncorhynchus mykiss. These two muscle fibre types generated distinct low and high myoelectric frequency bands. The cat paw-shake is an activity that recruits mainly fast muscle. This study showed that the myoelectric signal from the medial gastrocnemius of the cat was concentrated in a high frequency band during paw-shake behaviour. During slow walking, the slow motor units of the medial gastrocnemius are also recruited, and this appeared as increased muscle activity within a low frequency band. Therefore, high and low frequency bands could be distinguished in the myoelectric signals from the cat medial gastrocnemius and probably corresponded, respectively, to fast and slow motor unit recruitment. Myoelectric signals are resolved into time/frequency space using wavelets to demonstrate how patterns of motor unit recruitment can be determined for a range of locomotor activities.


2021 ◽  
Author(s):  
Jonathan Murphy ◽  
Emma Hodson-Tole ◽  
Andrew D Vigotsky ◽  
Jim R Potvin ◽  
James P Fisher ◽  
...  

The size principle is a theory of motor unit (MU) recruitment that suggests MUs are recruited in an orderly manner from the smallest (lower threshold) to the largest (higher threshold) MUs. A consequence of this biophysical theory is that, for isometric contractions, recruitment is dependent on the intensity of actual effort required to meet task demands. This concept has been supported by modelling work demonstrating that, in tasks performed to momentary failure, full MU recruitment will have occurred upon reaching failure irrespective of the force requirements of the task. However, in vivo studies examining this are limited. Therefore, the aim of the current study was to examine MU recruitment of the quadriceps under both higher- and lower-torque (70% and 30% of MVC, respectively) isometric knee extension, performed to momentary failure. Specifically, we compared surface electromyography (sEMG) frequency characteristics, determined by wavelet analysis, across the two continuous isometric knee extension tasks to identify potential differences in recruitment patterns. A convenience sample of 10 recreationally active adult males (height: mean = 179.6, SD = 6.0 cm; mass: mean = 76.8, SD = 7.3 kg; age: mean = 26 SD = 7 years) with previous resistance training experience (mean = 6, SD = 3 years) were recruited. Using a within-session, repeated-measures, randomised crossover design participants performed the knee extension tasks whilst sEMG was collected from the vastus medialis (VM), rectus femoris (RF) and vastus lateralis (VL). Myoelectric signals were decomposed into intensities as a function of time and frequency using an EMG-specific wavelet transformation. Our first analysis compared the mean frequency at momentary failure; second, we investigated the effects of load on relative changes in wavelet intensities; finally, we quantified the degree of wavelet similarity over time. Wavelet-based calculation of the mean signal frequency appeared to show similar mean frequency characteristics occurring when reaching momentary failure. However, individual wavelets revealed that different changes in frequency components occurred between the two tasks, suggesting that patterns of recruitment differed. Low-torque conditions resulted in an increase in intensity of all frequency components across the trials for each muscle whereas high-torque conditions resulted in a wider range of frequency components contained within the myoelectric signals at the beginning of the trials. However, as the low-torque trial neared momentary failure there was an increased agreement between conditions across wavelets. Our results corroborate modelling studies as well as recent biopsy evidence, suggesting overall MU recruitment may largely be similar for isometric tasks performed to momentary failure with the highest threshold MUs likely recruited, despite being achieved with differences in the pattern of recruitment over time utilised.


Author(s):  
Jordyn E. Ting ◽  
Alessandro Del Vecchio ◽  
Devapratim Sarma ◽  
Samuel C. Colachis ◽  
Nicholas V. Annetta ◽  
...  

AbstractMotor neurons in the brain and spinal cord convey information about motor intent that can be extracted and interpreted to control assistive devices, such as computers, wheelchairs, and robotic manipulators. However, most methods for measuring the firing activity of single neurons rely on implanted microelectrodes. Although intracortical brain-computer interfaces (BCIs) have been shown to be safe and effective, the requirement for surgery poses a barrier to widespread use. Here, we demonstrate that a wearable sensor array can detect residual motor unit activity in paralyzed muscles after severe cervical spinal cord injury (SCI). Despite generating no observable hand movement, volitional recruitment of motor neurons below the level of injury was observed across attempted movements of individual fingers and overt wrist and elbow movements. Subgroups of motor units were coactive during flexion or extension phases of the task. Single digit movement intentions were classified offline from the EMG power (RMS) or motor unit firing rates with median classification accuracies >75% in both cases. Simulated online control of a virtual hand was performed with a binary classifier to test feasibility of real time extraction and decoding of motor units. The online decomposition algorithm extracted motor units in 1.2 ms, and the firing rates predicted the correct digit motion 88 ± 24% of the time. This study provides the first demonstration of a wearable interface for recording and decoding firing rates of motor neurons below the level of injury in a person with tetraplegia after motor complete SCI.Significance StatementA wearable electrode array and machine learning methods were used to record and decode myoelectric signals and motor unit firing in paralyzed muscles of a person with motor complete tetraplegia. Motor unit action potentials were extracted from myoelectric signals during attempted movements of the fingers and voluntary movements of the wrist and elbow. The patterns of EMG and motor unit firing rates were highly task-specific, even in the absence of visible motion in the limb, enabling accurate classification of attempted movements of single digits. These results demonstrate the potential to create a wearable sensor for determining movement intentions from spared motor neurons, which may enable people with severe tetraplegia to control assistive devices such as computers, wheelchairs, and robotic manipulators.


1996 ◽  
Vol 76 (3) ◽  
pp. 1503-1516 ◽  
Author(s):  
C. J. de Luca ◽  
P. J. Foley ◽  
Z. Erim

1. The purpose of this study was 1) to characterize the decrease observed in mean firing rates of motor units in the first 8-15 s of isometric constant-force contractions and 2) to investigate possible mechanisms that could account for the ability to maintain force output in the presence of decreasing motor unit firing rates. 2. The decrease in mean firing rates was characterized by investigating myoelectric signals detected with a specialized quadrifilar needle electrode from the first dorsal interosseus (FDI) and the tibialis anterior (TA) muscles of 19 healthy subjects during a total of 85 constant-force isometric contractions at 30, 50, or 80% of maximal effort. The firing times of motor units were obtained from the myoelectric signals with the use of computer algorithms to decompose the signal into the constituent motor unit action potentials. Time-varying mean firing rates and recruitment thresholds were also calculated. 3. Motor units detected from the TA muscle were found to have a continual decrease in their mean firing rates in 36 of 44 trials performed during isometric ankle dorsiflexion at force values ranging from 30 to 80% of maximal effort and a duration of 8-15 s. Likewise, motor units detected in the FDI muscle displayed a decrease in firing rate in 32 of 41 trials performed during constant-force isometric index finger abduction for contractions ranging from 30 to 80% of maximal effort. In 14 contractions (16% of total), firing rates were essentially constant, whereas in 3 contractions (4%), firing rates appeared to increase. 4. Motor units with the higher recruitment thresholds and lower firing rates tended to display the greater decreases in firing rate over the constant-force interval, whereas motor units with lower recruitment thresholds and higher firing rates had lesser rates of decrease. Furthermore, increasing contraction levels tended to intensify the decrease in the motor unit firing rates. 5. Three possible mechanisms were considered as factors responsible for the maintaining of force output while motor units decreased their firing rates: motor unit recruitment, agonist/antagonist interaction, and twitch potentiation. Of these, motor unit recruitment was discarded first because none was observed during the 8-15 s duration of any of the 85 contractions. Furthermore, contractions outside the physiological range of motor unit recruitment (at 80% of maximal effort) revealed the same decreasing trend in firing rates, ruling out recruitment as the means of sustaining force output. 6. The role of agonist or antagonist muscle interaction was investigated with the use of the muscles controlling the wrist joint. Myoelectric signals were recorded with quadrifilar needle electrodes from the wrist extensor muscles while myoelectric activity in the wrist flexor muscles was concurrently monitored with surface electrodes during constant-force isometric wrist extension at 50% of maximal effort. Firing rates of the motor units in the wrist extensor muscles simultaneously decreased while the flexor muscles were determined to be inactive. 7. All the findings of this study regarding the behavior of the firing rates could be well explained by the reported characteristics of twitch potentiation that have been previously documented in animals and humans. 8. The results of this study, combined with the results of other investigators, provide the following scenario to explain how a constant-force isometric contraction is sustained. As the contraction progresses, the twitch force of the muscle fibers undergoes a potentiation followed by a decrease. Simultaneously, the "late adaptation" property of the motoneuron decreases the firing rate of the motor unit. Findings of this study suggest that voluntary reduction in firing rates also cannot be ruled out as a means to augment the adaptation in motoneurons. (ABSTRACT TRUNCATED)


Sign in / Sign up

Export Citation Format

Share Document