scholarly journals Applied mechanics of the Puricelli osteotomy: a linear elastic analysis with the finite element method

2007 ◽  
Vol 3 (1) ◽  
Author(s):  
Edela Puricelli ◽  
Jun Sérgio Ono Fonseca ◽  
Marcel Fasolo de Paris ◽  
Hervandil Sant'Anna
Author(s):  
Ye-Chen Lai ◽  
Timothy C. S. Liang ◽  
Zhenxue Jia

Abstract Based on hierarchic shape functions and an effective convergence procedure, the p-version and h-p adaptive analysis capabilities were incorporated into a finite element software system, called COSMOS/M. The range of the polynomial orders can be varied from 1 to 10 for two dimensional linear elastic analysis. In the h-p adaptive analysis process, a refined mesh are first achieved via adaptive h-refinement. The p-refinement is then added on to the h-version designed mesh by uniformly increasing the degree of the polynomials. Some numerical results computed by COSMOS/M are presented to illustrate the performance of these p and h-p analysis capabilities.


2009 ◽  
Vol 46 (6) ◽  
pp. 627-638 ◽  
Author(s):  
Nainan P. Kurian ◽  
Syed J. Shah

A circular pile with helical blades is an old type of foundation, which has staged a comeback recently and is being used in a variety of situations. Most of the research on helical screw piles has been experimental or theoretical with the help of simplifying assumptions. The method of design adopted so far treats this pile as an annular plate, disregarding the intricacies of the geometry of the helix. It is only the versatility of the finite element method that can take into account the actual geometry of a spatial structure such as the helical blade at a microlevel. This is perhaps the first attempt at such an analysis to study the response of the helical screw pile within the elastic and nonlinear ranges. While the pile is linearly elastic, soil is considered both as a linear elastic medium and as an elastic–plastic medium following the Drucker–Prager constitutive model. Cases of smooth contact and frictional contact between soil and screw pile are also considered. Screw piles are studied under compressive, tensile, and lateral loading conditions. Moreover, their performance is compared with that of prismatic piles. A parametric study has also been attempted on some key geometrical features of the screw pile.


1999 ◽  
Vol 123 (3) ◽  
pp. 218-224 ◽  
Author(s):  
Cemal Basaran ◽  
Ying Zhao

Multi-layered stacks are commonly used in microelectronic packaging. Traditionally, these systems are designed using linear-elastic analysis either with analytical solutions or finite element method. Linear-elastic analysis for layered structures yields very conservative results due to stress singularity at the free edge. In this paper, it is shown that a damage mechanics based nonlinear analysis not just leads to a more realistic analysis but also provides more accurate stress distribution. In this paper these two approaches are compared. Moreover, mesh sensitivity of the finite element analysis in stack problems is studied. It is shown that the closed form and elastic finite element analyses can only be used for preliminary studies and elastic finite element method is highly mesh sensitive for this problem. In elastic analysis the stress singularity at the free edge makes mesh selection very difficult. Even when asymptotic analysis is used at the free edge, the results are very conservative compared to an inelastic analysis. Rate sensitive inelastic analysis does not suffer from the stress singularity and mesh sensitivity problems encountered in elastic analysis.


2010 ◽  
Vol 63 (2) ◽  
Author(s):  
Leslie Banks-Sills

Since the previous paper was written (Banks-Sills, 1991, “Application of the Finite Element Method to Linear Elastic Fracture Mechanics,” Appl. Mech. Rev., 44, pp. 447–461), much progress has been made in applying the finite element method to linear elastic fracture mechanics. In this paper, the problem of calculating stress intensity factors in two- and three-dimensional mixed mode problems will be considered for isotropic and anisotropic materials. The square-root singular stresses in the neighborhood of the crack tip will be modeled by quarter-point, square and collapsed, triangular elements for two-dimensional problems, respectively, and by brick and collapsed, prismatic elements in three dimensions. The stress intensity factors are obtained by means of the interaction energy or M-integral. Displacement extrapolation is employed as a check on the results. In addition, the problem of interface cracks between homogeneous, isotropic, and anisotropic materials is presented. The purpose of this paper is to present an accurate and efficient method for calculating stress intensity factors for mixed mode deformation. The equations presented here should aid workers in this field to carry out similar analyses, as well as to check their calculations with respect to the examples described.


Author(s):  
Kotur S. Raghavan

ASME’s Boiler and Pressure Vessel Codes have a history of over one hundred years. The codes have been evolving over time with continuous revisions, improvements and refinements. A major milestone has been the incorporation of “Design by Analysis (DBA)” guidelines about fifty years back (for instance Sec. VIII, Division 2). These were introduced as it was recognized that the prevailing Design by Rules (Section VIII, Division 1) tended to be somewhat over-conservative. The essence of DBA guidelines consists of evaluating the elastic stresses at critical locations and checking the same against the allowable. The allowable happen to functions of the nature of stress distribution and the nature of load. A given stress could be of membrane, bending or peak category and also be either primary or secondary. At the time of appearance of the DBA guidelines, the state of the art of stress analysis was not well advanced and the finite element method was just getting developed. As of today, however, the finite element method has reached a high level of maturity and is very widely used. The latest edition (2010) has recognized this and it contains modeling and post-processing guidelines applicable to FE analysis. This edition also recommends the use of one of three possible approaches. The first is the elastic analysis and classification and categorization of stresses with guidelines regarding how to deal with two- and three-dimensional situations. The other two options are provided to take care of situations wherein the categorization process may lead to either uncertainty or ambiguity. These involve nonlinear analysis either by way of Limit-Load method or Elastic-Plastic Stress Analysis. In either approach the analyst will look for the loads at which there is an onset of gross plastic flow. In the present paper an attempt is made to evaluate the latest DBA guidelines from design application point of view. The purpose is to assess the limitations of the elastic analysis approach. Studies are undertaken to focus typically on the following aspects: 1. Two dimensional problems involving symmetry or axisymmetry. There are situations in which the “bending” stresses are liable to be misinterpreted. 2. Three dimensional problems with emphasis on the assessment of bending stress as categorization in 3D situations is a real challenge 3. General situations involving the secondary stresses. The allowable stress limit for secondary stress is somewhat arbitrary and perhaps very conservative. The studies tend to suggest that the nonlinear route is to be adopted as it is reliable and accounts for many uncertainties associated with the elastic approach.


2002 ◽  
Vol 55 (2) ◽  
pp. 89-106 ◽  
Author(s):  
Antonio Miravete ◽  
Miguel A Jime´nez

The present article is concerned with the application of the finite element method to the analysis of the onset of delamination growth in composites by means of the virtual crack closure technique (VCCT). The article reviews first the application of linear elastic fracture mechanics (LEFM) to the analysis of delamination, as well as the reasons why the VCC technique is the standard method of combining LEFM and the finite element method to predict onset of delamination growth. The article also reviews the different solutions proposed in the literature to deal with the oscillatory singularity associated with a crack between two dissimilar materials (as is the case for a delamination) and the practical details of the VCCT application in a general 3D analysis. Finally, the results of a numerical study of the mixed mode bending (MMB) interlaminar fracture test are shown. The study applies the concepts reviewed along the rest of this article and presents some practical recommendations for the analysis of a delamination front using finite elements. This review article includes 77 references.


Nanoscale ◽  
2019 ◽  
Vol 11 (43) ◽  
pp. 20868-20875 ◽  
Author(s):  
Junxiong Guo ◽  
Yu Liu ◽  
Yuan Lin ◽  
Yu Tian ◽  
Jinxing Zhang ◽  
...  

We propose a graphene plasmonic infrared photodetector tuned by ferroelectric domains and investigate the interfacial effect using the finite element method.


Sign in / Sign up

Export Citation Format

Share Document