scholarly journals Modeling of radial variations of wood properties in naturally regenerated trees of Betula platyphylla grown in Selenge, Mongolia

2021 ◽  
Vol 67 (1) ◽  
Author(s):  
Togtokhbayar Erdene-Ochir ◽  
Futoshi Ishiguri ◽  
Ikumi Nezu ◽  
Bayasaa Tumenjargal ◽  
Bayartsetseg Baasan ◽  
...  

AbstractWood properties, such as annual ring width, wood fiber length, vessel element length, basic density, air-dry density, dynamic Young’s modulus, modulus of elasticity (MOE), modulus of rupture (MOR), absorbed energy in impact bending, compressive strength parallel to grain, and shearing strength, were investigated for wood from 10 naturally regenerated trees of Betula platyphylla Sukaczev in Mandal, Selenge, Mongolia. Mixed-effects models were used to evaluate the radial variations in the wood properties. The mean values of wood properties obtained in the present study were in almost the same range, with a few exceptions, as those reported by other researchers for other Betula species. The radial variations of wood properties in B. platyphylla were well-fitted to a nonlinear mixed-effects model (logarithmic formula); all examined wood properties increased from the pith and then became constant toward the bark side. The wood properties significantly differed between the core and outer wood. Basic density, air-dry density, and dynamic Young’s modulus were significantly correlated with MOE, MOR, and compressive strength. It is concluded that when the wood of B. platyphylla is utilized as raw materials for solid wood products, the differences between the core wood and outer wood should be considered. In addition, the selection of wood with higher strength properties can be achieved using the wood density and dynamic Young’s modulus as indicators.

1975 ◽  
Vol 9 (2) ◽  
pp. 286-290
Author(s):  
S. S. Abramchuk ◽  
V. S. Shirokolava ◽  
V. L. Polyakov

2010 ◽  
Vol 26-28 ◽  
pp. 936-939
Author(s):  
Li Zhang ◽  
Ying Cheng Hu

In this paper, the poplar LVL was reinforced with multilayer fiberglass mesh. The reinforcing effect of adding position of fiberglass mesh on improving the static MOE was studied. And three different nondestructive testing (NDT) methods, such as the longitudinal transmission method, longitudinal vibration method and flexural vibration method (out-plane and in-plane), were used to test the dynamic properties of the reinforced poplar LVL. The correlation analysis was implemented between the dynamic Young’s modulus and the static MOE of the reinforced poplar LVL. It can be concluded that the three NDT methods are useful for predicting the MOE of reinforced LVL, but the flexural and longitudinal vibration methods had better accuracy to estimate the MOE.


Sign in / Sign up

Export Citation Format

Share Document