scholarly journals Actin polymerization state regulates osteogenic differentiation in human adipose-derived stem cells

2021 ◽  
Vol 26 (1) ◽  
Author(s):  
Bing Sun ◽  
Rongmei Qu ◽  
Tingyu Fan ◽  
Yuchao Yang ◽  
Xin Jiang ◽  
...  

Abstract Background Actin is an essential cellular protein that assembles into microfilaments and regulates numerous processes such as cell migration, maintenance of cell shape, and material transport. Methods In this study, we explored the effect of actin polymerization state on the osteogenic differentiation of human adipose-derived stem cells (hASCs). The hASCs were treated for 7 days with different concentrations (0, 1, 5, 10, 20, and 50 nM) of jasplakinolide (JAS), a reagent that directly polymerizes F-actin. The effects of the actin polymerization state on cell proliferation, apoptosis, migration, and the maturity of focal adhesion-related proteins were assessed. In addition, western blotting and alizarin red staining assays were performed to assess osteogenic differentiation. Results Cell proliferation and migration in the JAS (0, 1, 5, 10, and 20 nM) groups were higher than in the control group and the JAS (50 nM) group. The FAK, vinculin, paxillin, and talin protein expression levels were highest in the JAS (20 nM) group, while zyxin expression was highest in the JAS (50 nM) group. Western blotting showed that osteogenic differentiation in the JAS (0, 1, 5, 10, 20, and 50 nM) group was enhanced compared with that in the control group, and was strongest in the JAS (50 nM) group. Conclusions In summary, our data suggest that the actin polymerization state may promote the osteogenic differentiation of hASCs by regulating the protein expression of focal adhesion-associated proteins in a concentration-dependent manner. Our findings provide valuable information for exploring the mechanism of osteogenic differentiation in hASCs.

2020 ◽  
Author(s):  
Bing Sun ◽  
Xin Jiang ◽  
Rongmei Qu ◽  
Tingyu Fan ◽  
Yuchao Yang ◽  
...  

Abstract Background:Actin is an essential cellular protein that assembles into microfilaments and regulates numerous processes such as cell migration, maintenance of cell shape, and material transport. In this study, we explored the effect of actin polymerization state on the osteogenic differentiation of human adipose-derived stem cells (hASCs). Methods:The hASCs were treated with different concentrations (0, 1, 5, 10, 20, and 50 nM)of jasplakinolide (JAS), a reagent that directly polymerizes F-actin.The effects ofthe actin polymerization state on cell proliferation, apoptosis, migration, and the maturity of focal adhesion-related proteins were assessed. In addition, western blotting and alizarin red staining assays were performed to assess osteogenic differentiation. Results: These results revealed that cell proliferation and migration in the JAS (0, 1, 5, 10, and 20 nM) groupswashigher than that inthe control group andthe JAS (50 nM) group.The protein expressionof focal adhesion kinase, vinculin, paxillin, and talinwere highest in the JAS (20 nM) group, whilezyxin expression was highestinthe JAS (50 nM) group.Western blottingshowed thatosteogenic differentiation in theJAS (0, 1, 5, 10, 20, and 50 nM) groupswas enhanced compared with that in thecontrol group, and was strongest inthe JAS (50 nM) group.Conclusions: Our data suggest thatthe actinpolymerization state may promote the osteogenic differentiation of hASCs by regulating the protein expression of focal adhesion-associated proteins in a concentration-dependent manner. Our findings provide valuable information for exploring the mechanism of osteogenic differentiationin hASCs.


2019 ◽  
Vol 9 (10) ◽  
pp. 1429-1434
Author(s):  
Qing Yang ◽  
Cheng Li ◽  
Manli Yan ◽  
Chunhua Fang

Bone marrow mesenchymal stem cells (BMSCs) can be differentiated into different types of cells. SOX9 involves in the development and progression of various diseases. Our study aims to assess SOX9's effect on osteogenic differentiation of BMSCs and its related regulatory mechanisms. Rat BMSCs were isolated and randomly divided into control group, SOX9 group and SOX9 siRNA group, which was transfected with pcDNA-SOX9 plasmid or SOX9 siRNA respectively followed by analysis of SOX9 expression by Real time PCR, cell proliferation by MTT assay, Caspase3 and ALP activity, GSK-3β expression and Wntβ/Catenin Signaling pathway protein expression by Western blot, and expression of osteogenic genes Runx2 and BMP-2 by Real time PCR. Transfection of pcDNA-SOX9 plasmid into BMSCs significantly inhibited cell proliferation, promoted Caspase3 activity, decreased ALP activity and downregulated Runx2 and BMP-2, increased GSK-3β expression and decreased Wntβ/Catenin expression protein expression (P< 0.05). SOX9 siRNA transfection significantly promoted cell proliferation, inhibited Caspase3 activity, increased ALP activity and upregulated Runx2 and BMP-2, downregulated GSK-3β and increased Wntβ/Catenin expression. SOX9 regulates BMSCs proliferation and osteogenic differentiation through Wntβ/Catenin signaling pathway.


2014 ◽  
Vol 92 (6) ◽  
pp. 467-475 ◽  
Author(s):  
Fang-Tian Xu ◽  
Hong-Mian Li ◽  
Qing-Shui Yin ◽  
Shi-En Cui ◽  
Da-Lie Liu ◽  
...  

Aims: To investigate whether ginsenoside Rg1 can promote neural phenotype differentiation of human adipose-derived stem cells (hASCs) in vitro. Methods: hASCs were isolated from lipo-aspirates, and characterized by specific cell markers and multilineage differentiation capacity after culturing to the 3rd passage. Cultured hASCs were treated with neural inductive media alone (group A, control) or inductive media plus 10, 50, or 100 μg/mL ginsenoside Rg1 (groups B, C, and D, respectively). Cell proliferation was assessed by CCK-8 assay. Neuron specific enolase (NSE) and microtubule-associated protein-2 (MAP-2) levels were measured by Western blot. mRNA levels of growth associated protein-43 (GAP-43), neural cell adhesion molecule (NCAM), and synapsin-1 (SYN-1) were determined by real-time PCR. Results: Ginsenoside Rg1 promoted the proliferation of hASCs (groups B, C, and D) and resulted in higher expression of NSE and MAP-2 compared with the control group. Gene expression levels of GAP-43, NCAM, and SYN-1 in the test groups were higher than that in thw control. The results displayed a dose-dependent effect of ginsenoside Rg1 on cell proliferation and neural phenotype differentiation. Conclusion: This study indicated that ginsenoside Rg1 promotes cell proliferation and neural phenotype differentiation of hASCs in vitro, suggesting a potential use for hASCs in neural regeneration medicine.


2019 ◽  
Vol 9 (9) ◽  
pp. 1304-1310
Author(s):  
Qing Yang ◽  
Lei Wu ◽  
Yang Liu ◽  
Bing Yuan

Chordin-like 1 (CHRDL1) functions in multiple tissues and organs. However, whether CHRDL1 affects bone marrow mesenchymal stem cells (BMSCs) differentiation remain unclear. Rat BMSCs were isolated and divided into control group, CHRDL1 group and CHRDL1 siRNA group followed by analysis of CHRDL1 level by real time PCR and ELISA, cell proliferation by MTT assay, Caspase 3 activity, ALP activity, expression of o Runx2, OC and PPARγ2 by Real time PCR, TGF-β secretion by ELIS, and Wnt5 protein expression by Western blot. CHRDL1 expression was significantly increased in CHRDL1 group, along with significantly promoted cell proliferation, decreased Caspase 3 activity, increased ALP activity and expression of Runx2 and OC, decreased PPARγ2 expression, increased TGF-β secretion and Wnt5 expression compared to control group (P < 0.05). However, CHRDL1 siRNA transfection significantly decreased CHRDL1 expression, inhibited cell proliferation, increased Caspase 3 activity, decreased ALP activity and Runx2 and OC expression, increased PPARγ2 expression, decreased TGF-β secretion and Wnt5 expression. (P < 0.05). Down-regulation of CHRDL1 expression in BMSCs promotes Wnt5/TGF-β signaling transduction, which in turn increases BMSCs proliferation and osteogenic differentiation. Up-regulation of CHRDL1 expression in BMSCs inhibited the activation of Wnt5/TGF-β signaling pathway, promoted BMSCs apoptosis, and inhibited BMSCs proliferation and osteogenic differentiation.


2020 ◽  
Vol 15 (1) ◽  
Author(s):  
Zhicheng Tong ◽  
Yanchang Liu ◽  
Runzhi Xia ◽  
Yongyun Chang ◽  
Yi Hu ◽  
...  

Abstract Titanium and titanium alloys are widely used in orthopedic implants. Modifying the nanotopography provides a new strategy to improve osseointegration of titanium substrates. Filamentous actin (F-actin) polymerization, as a mechanical loading structure, is generally considered to be involved in cell migration, endocytosis, cell division, and cell shape maintenance. Whether F-actin is involved and how it functions in nanotube-induced osteogenic differentiation of mesenchymal stem cells (MSCs) remain to be elucidated. In this study, we fabricated TiO2 nanotubes on the surface of a titanium substrate by anodic oxidation and characterized their features by scanning electron microscopy (SEM), X-ray energy dispersive analysis (EDS), and atomic force microscopy (AFM). Alkaline phosphatase (ALP) staining, Western blotting, qRT-PCR, and immunofluorescence staining were performed to explore the osteogenic potential, the level of F-actin, and the expression of MKL1 and YAP/TAZ. Our results showed that the inner diameter and roughness of TiO2 nanotubes increased with the increase of the anodic oxidation voltage from 30 to 70 V, while their height was 2 μm consistently. Further, the larger the tube diameter, the stronger the ability of TiO2 nanotubes to promote osteogenic differentiation of MSCs. Inhibiting F-actin polymerization by Cyto D inhibited osteogenic differentiation of MSCs as well as the expression of proteins contained in focal adhesion complexes such as vinculin (VCL) and focal adhesion kinase (FAK). In contrast, after Jasp treatment, polymerization of F-actin enhanced the expression of RhoA and transcription factors YAP/TAZ. Based on these data, we concluded that TiO2 nanotubes facilitated the osteogenic differentiation of MSCs, and this ability was enhanced with the increasing diameter of the nanotubes within a certain range (30–70 V). F-actin mediated this process through MKL1 and YAP/TAZ.


2020 ◽  
Author(s):  
Mahdieh Alipour ◽  
Nima Firouzi ◽  
Marziyeh Aghazadeh ◽  
Mohammad Samiei ◽  
Soheila Montazersaheb ◽  
...  

Abstract Background Microcapsule is considered as a promising 3D microenvironment for Bone Tissue Engineering (BTE) applications. Microencapsulation of cells in an appropriate scaffold not only protects cells against excess stress but also promotes cell proliferation and differentiation. Methods In the current study, human Dental Pulp Stem Cells (hDPSCs) were cultivated in Alginate/Gelatin (Alg/Gel) and Alginate/Gelatin/nano-Hydroxyapatite (Alg/Gel/nHA) microcapsules. The proliferation and osteogenic differentiation of these cells were evaluated by MTT assay, qRT-PCR, Alkaline phosphatase, and Alizarine Red S.Results The results revealed that microencapsulation by Alg/Gel/nHA could improve cell proliferation and induce osteogenic differentiation. The cells cultured in the Alg/Gel and Alg/Gel/nHA microcapsules after 28 days showed 2.5-fold and 4-fold more activity of BMP-2 gene expression in comparison with the cells cultured on the polystyrene surface as a control group. The nHA addition to hDPSCs-laden Alg/Gel microcapsule could also up-regulate the bone-related gene expressions of osteocalcin, osteonectin, and RUNX-2 during a 28-day culture period. Calcium deposition and ALP activities of the cells were obsereved in accordance with the proliferation results as well as the gene expression analysis. Conclusion The study demonstrated that microencapsulation of hDPSCs inside Alg/Gel/nHA hydrogel can be a potential approach for regenerative dentistry in the near future.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Manal Nabil Hagar ◽  
Farinawati Yazid ◽  
Nur Atmaliya Luchman ◽  
Shahrul Hisham Zainal Ariffin ◽  
Rohaya Megat Abdul Wahab

Abstract Background Mesenchymal stem cells isolated from the dental pulp of primary and permanent teeth can be differentiated into different cell types including osteoblasts. This study was conducted to compare the morphology and osteogenic potential of stem cells from exfoliated deciduous teeth (SHED) and dental pulp stem cells (DPSC) in granular hydroxyapatite scaffold (gHA). Preosteoblast cells (MC3T3-E1) were used as a control group. Methodology The expression of stemness markers for DPSC and SHED was evaluated using reverse transcriptase-polymerase chain reaction (RT-PCR). Alkaline phosphatase assay was used to compare the osteoblastic differentiation of these cells (2D culture). Then, cells were seeded on the scaffold and incubated for 21 days. Morphology assessment using field emission scanning electron microscopy (FESEM) was done while osteogenic differentiation was detected using ALP assay (3D culture). Results The morphology of cells was mononucleated, fibroblast-like shaped cells with extended cytoplasmic projection. In RT-PCR study, DPSC and SHED expressed GAPDH, CD73, CD105, and CD146 while negatively expressed CD11b, CD34 and CD45. FESEM results showed that by day 21, dental stem cells have a round like morphology which is the morphology of osteoblast as compared to day 7. The osteogenic potential using ALP assay was significantly increased (p < 0.01) in SHED as compared to DPSC and MC3T3-E1 in 2D and 3D cultures. Conclusion gHA scaffold is an optimal scaffold as it induced osteogenesis in vitro. Besides, SHED had the highest osteogenic potential making them a preferred candidate for tissue engineering in comparison with DPSC.


Sign in / Sign up

Export Citation Format

Share Document