scholarly journals Early white matter development is abnormal in tuberous sclerosis complex patients who develop autism spectrum disorder

Author(s):  
Anna K. Prohl ◽  
◽  
Benoit Scherrer ◽  
Xavier Tomas-Fernandez ◽  
Peter E. Davis ◽  
...  

Abstract Background Autism spectrum disorder (ASD) is prevalent in tuberous sclerosis complex (TSC), occurring in approximately 50% of patients, and is hypothesized to be caused by disruption of neural circuits early in life. Tubers, or benign hamartomas distributed stochastically throughout the brain, are the most conspicuous of TSC neuropathology, but have not been consistently associated with ASD. Widespread neuropathology of the white matter, including deficits in myelination, neuronal migration, and axon formation, exist and may underlie ASD in TSC. We sought to identify the neural circuits associated with ASD in TSC by identifying white matter microstructural deficits in a prospectively recruited, longitudinally studied cohort of TSC infants. Methods TSC infants were recruited within their first year of life and longitudinally imaged at time of recruitment, 12 months of age, and at 24 months of age. Autism was diagnosed at 24 months of age with the ADOS-2. There were 108 subjects (62 TSC-ASD, 55% male; 46 TSC+ASD, 52% male) with at least one MRI and a 24-month ADOS, for a total of 187 MRI scans analyzed (109 TSC-ASD; 78 TSC+ASD). Diffusion tensor imaging properties of multiple white matter fiber bundles were sampled using a region of interest approach. Linear mixed effects modeling was performed to test the hypothesis that infants who develop ASD exhibit poor white matter microstructural integrity over the first 2 years of life compared to those who do not develop ASD. Results Subjects with TSC and ASD exhibited reduced fractional anisotropy in 9 of 17 white matter regions, sampled from the arcuate fasciculus, cingulum, corpus callosum, anterior limbs of the internal capsule, and the sagittal stratum, over the first 2 years of life compared to TSC subjects without ASD. Mean diffusivity trajectories did not differ between groups. Conclusions Underconnectivity across multiple white matter fiber bundles develops over the first 2 years of life in subjects with TSC and ASD. Future studies examining brain-behavior relationships are needed to determine how variation in the brain structure is associated with ASD symptoms.

2010 ◽  
Vol 41 (7) ◽  
pp. 1539-1550 ◽  
Author(s):  
J. Radua ◽  
E. Via ◽  
M. Catani ◽  
D. Mataix-Cols

BackgroundWe conducted a meta-analysis of voxel-based morphometry (VBM) studies in autism spectrum disorder (ASD) to clarify the changes in regional white-matter volume underpinning this condition, and generated an online database to facilitate replication and further analyses by other researchers.MethodPubMed, ScienceDirect, Web of Knowledge and Scopus databases were searched between 2002 (the date of the first white-matter VBM study in ASD) and 2010. Manual searches were also conducted. Authors were contacted to obtain additional data. Coordinates were extracted from clusters of significant white-matter difference between patients and controls. A new template for white matter was created for the signed differential mapping (SDM) meta-analytic method. A diffusion tensor imaging (DTI)-derived atlas was used to optimally localize the changes in white-matter volume.ResultsThirteen datasets comprising 246 patients with ASD and 237 healthy controls met inclusion criteria. No between-group differences were found in global white-matter volumes. ASD patients showed increases of white-matter volume in the right arcuate fasciculus and also in the left inferior fronto-occipital and uncinate fasciculi. These findings remained unchanged in quartile and jackknife sensitivity analyses and also in subgroup analyses (pediatric versus adult samples).ConclusionsPatients with ASD display increases of white-matter volume in tracts known to be important for language and social cognition. Whether the results apply to individuals with lower IQ or younger age and whether there are meaningful neurobiological differences between the subtypes of ASD remain to be investigated.


2019 ◽  
Vol 12 (12) ◽  
pp. 1758-1773 ◽  
Author(s):  
Abigail Dickinson ◽  
Kandice J. Varcin ◽  
Mustafa Sahin ◽  
Charles A. Nelson ◽  
Shafali S. Jeste

2015 ◽  
Vol 233 (1) ◽  
pp. 64-72 ◽  
Author(s):  
Melissa Kirkovski ◽  
Peter G. Enticott ◽  
Jerome J. Maller ◽  
Susan L. Rossell ◽  
Paul B. Fitzgerald

Sign in / Sign up

Export Citation Format

Share Document