scholarly journals Estimates of recent and historical effective population size in turbot, seabream, seabass and carp selective breeding programmes

2021 ◽  
Vol 53 (1) ◽  
Author(s):  
María Saura ◽  
Armando Caballero ◽  
Enrique Santiago ◽  
Almudena Fernández ◽  
Elisabeth Morales-González ◽  
...  

Abstract Background The high fecundity of fish species allows intense selection to be practised and therefore leads to fast genetic gains. Based on this, numerous selective breeding programmes have been started in Europe in the last decades, but in general, little is known about how the base populations of breeders have been built. Such knowledge is important because base populations can be created from very few individuals, which can lead to small effective population sizes and associated reductions in genetic variability. In this study, we used genomic information that was recently made available for turbot (Scophthalmus maximus), gilthead seabream (Sparus aurata), European seabass (Dicentrarchus labrax) and common carp (Cyprinus carpio) to obtain accurate estimates of the effective size for commercial populations. Methods Restriction-site associated DNA sequencing data were used to estimate current and historical effective population sizes. We used a novel method that considers the linkage disequilibrium spectrum for the whole range of genetic distances between all pairs of single nucleotide polymorphisms (SNPs), and thus accounts for potential fluctuations in population size over time. Results Our results show that the current effective population size for these populations is small (equal to or less than 50 fish), potentially putting the sustainability of the breeding programmes at risk. We have also detected important drops in effective population size about five to nine generations ago, most likely as a result of domestication and the start of selective breeding programmes for these species in Europe. Conclusions Our findings highlight the need to broaden the genetic composition of the base populations from which selection programmes start, and suggest that measures designed to increase effective population size within all farmed populations analysed here should be implemented in order to manage genetic variability and ensure the sustainability of the breeding programmes.

2011 ◽  
Vol 54 (1) ◽  
pp. 1-9
Author(s):  
L. Vostrý ◽  
Z. Čapková ◽  
J. Přibyl ◽  
B. Hofmanová ◽  
H. Vostrá Vydrová ◽  
...  

Abstract. In order to estimate effective population size, generation interval and the development of inbreeding coefficients (Fx) in three original breeds of cold-blooded horses kept in the Czech Republic: Silesian Noriker (SN), Noriker (N) and Czech-Moravian Belgian horse (CMB) all animals of the particular breeds born from 1990 to 2007 were analysed. The average values of generation interval between parents and their offspring were: 8.53 in SN, 8.88 in N and 8.56 in CMB. Average values of effective population size were estimated to be: 86.3 in SN, 162.3 in N and 104.4 in CMB. The average values of inbreeding coefficient were 3.13 % in SN stallions and 3.39 % in SN mares, in the N breed 1.76 % and 1.26 % and in the CMB breed 3.84 % and 3.26 % respectively. Overall averages of Fx were: 3.23 %, 1.51 % and 3.55 % for the breeds SN, N and CMB. The average value of inbreeding coefficient Fx increased by 1.22 % in SN, by 0.35 % in N and by 1.01 % in CMB, respectively. This may lead to a reduction in genetic variability. Reduction in genetic variability could be either controlled in cooperation with corresponding populations of cold-blooded breeds in other European countries or controlled by number of sires used in population


Genetics ◽  
1977 ◽  
Vol 86 (3) ◽  
pp. 697-713
Author(s):  
C Chevalet ◽  
M Gillois ◽  
R F Nassar

ABSTRACT Properties of identity relation between genes are discussed, and a derivation of recurrent equations of identity coefficients in a random mating, diploid dioecious population is presented. Computations are run by repeated matrix multiplication. Results show that for effective population size (Ne) larger than 16 and no mutation, a given identity coefficient at any time t can be expressed approximately as a function of (1—f), (1—f)3 and (1—f)6, where f is the mean inbreeding coefficient at time t. Tables are presented, for small Ne values and extreme sex ratios, showing the pattern of change in the identity coefficients over time. The pattern of evolution of identity coefficients is also presented and discussed with respect to N eu, where u is the mutation rate. Applications of these results to the evolution of genetic variability within and between inbred lines are discussed.


2020 ◽  
Vol 12 (12) ◽  
pp. 2441-2449
Author(s):  
Jennifer James ◽  
Adam Eyre-Walker

Abstract What determines the level of genetic diversity of a species remains one of the enduring problems of population genetics. Because neutral diversity depends upon the product of the effective population size and mutation rate, there is an expectation that diversity should be correlated to measures of census population size. This correlation is often observed for nuclear but not for mitochondrial DNA. Here, we revisit the question of whether mitochondrial DNA sequence diversity is correlated to census population size by compiling the largest data set to date, using 639 mammalian species. In a multiple regression, we find that nucleotide diversity is significantly correlated to both range size and mass-specific metabolic rate, but not a variety of other factors. We also find that a measure of the effective population size, the ratio of nonsynonymous to synonymous diversity, is also significantly negatively correlated to both range size and mass-specific metabolic rate. These results together suggest that species with larger ranges have larger effective population sizes. The slope of the relationship between diversity and range is such that doubling the range increases diversity by 12–20%, providing one of the first quantifications of the relationship between diversity and the census population size.


1984 ◽  
Vol 44 (3) ◽  
pp. 321-341 ◽  
Author(s):  
P. J. Avery

SUMMARYFrom the available electrophoretic data, it is clear that haplodiploid insects have a much lower level of genetic variability than diploid insects, a difference that is only partially explained by the social structure of some haplodiploid species. The data comparing X-linked genes and autosomal genes in the same species is much more sparse and little can be inferred from it. This data is compared with theoretical analyses of X-linked genes and genes in haplodiploids. (The theoretical population genetics of X-linked genes and genes in haplodiploids are identical.) X-linked genes under directional selection will be lost or fixed more quickly than autosomal genes as selection acts more directly on X-linked genes and the effective population size is smaller. However, deleterious disease genes, maintained by mutation pressure, will give higher disease incidences at X-linked loci and hence rare mutants are easier to detect at X-linked loci. Considering the forces which can maintain balanced polymorphisms, there are much stronger restrictions on the fitness parameters at X-linked loci than at autosomal loci if genetic variability is to be maintained, and thus fewer polymorphic loci are to be expected on the X-chromosome and in haplodiploids. However, the mutation-random drift hypothesis also leads to the expectation of lower heterozygosity due to the decrease in effective population size. Thus the theoretical results fit in with the data but it is still subject to argument whether selection or mutation-random drift are maintaining most of the genetic variability at X-linked genes and genes in haplodiploids.


2019 ◽  
Author(s):  
M. Elise Lauterbur

AbstractPopulation genetics employs two major models for conceptualizing genetic relationships among individuals – outcome-driven (coalescent) and process-driven (forward). These models are complementary, but the basic Kingman coalescent and its extensions make fundamental assumptions to allow analytical approximations: a constant effective population size much larger than the sample size. These make the probability of multiple coalescent events per generation negligible. Although these assumptions are often violated in species of conservation concern, conservation genetics often uses coalescent models of effective population sizes and trajectories in endangered species. Despite this, the effect of very small effective population sizes, and their interaction with bottlenecks and sample sizes, on such analyses of genetic diversity remains unexplored. Here, I use simulations to analyze the influence of small effective population size, population decline, and their relationship with sample size, on coalescent-based estimates of genetic diversity. Compared to forward process-based estimates, coalescent models significantly overestimate genetic diversity in oversampled populations with very small effective sizes. When sampled soon after a decline, coalescent models overestimate genetic diversity in small populations regardless of sample size. Such overestimates artificially inflate estimates of both bottleneck and population split times. For conservation applications with small effective population sizes, forward simulations that do not make population size assumptions are computationally tractable and should be considered instead of coalescent-based models. These findings underscore the importance of the theoretical basis of analytical techniques as applied to conservation questions.


Sociobiology ◽  
2014 ◽  
Vol 59 (1) ◽  
pp. 165
Author(s):  
Kaori Murase ◽  
Masaharu Fukita

Although many people have been paying attention to the decrease of biodiversity on earth in recent years, many local people, even staff of national parks, live under limiting conditions (such as a shortage of funds, specialists, literature, equipment for experiments and so on). To conserve biodiversity, it is important to be clear about which species decrease or increase. To find such information, it is quite important to know the dynamics of effective population size for each species. Although a large number of papers have been written about how to improve the precision of the estimated effective population size, little has been studied on how to estimate the dynamics of the effective population sizes for many species together under limiting situations, very similar to the management methods of national parks in countries which have biological hot spots. In this paper, we are not concerned with the improvement of the precision of the estimates. We do, however, propose a simple method for the estimation of the effective population size. We named it the “MMR method.” It is not difficult to understand and is easily applied to many species. To show the usefulness of the MMR method we made simple virtual species, which included the first generation and the second generation, on a computer, and then we conducted simulations to estimate the effective population size of the first generation. We calculated three statistics to estimate whether the MMR method is useful or not. The three statistics showed that the MMR method is useful.


Sign in / Sign up

Export Citation Format

Share Document