scholarly journals SpliceFinder: ab initio prediction of splice sites using convolutional neural network

2019 ◽  
Vol 20 (S23) ◽  
Author(s):  
Ruohan Wang ◽  
Zishuai Wang ◽  
Jianping Wang ◽  
Shuaicheng Li

Abstract Background Identifying splice sites is a necessary step to analyze the location and structure of genes. Two dinucleotides, GT and AG, are highly frequent on splice sites, and many other patterns are also on splice sites with important biological functions. Meanwhile, the dinucleotides occur frequently at the sequences without splice sites, which makes the prediction prone to generate false positives. Most existing tools select all the sequences with the two dimers and then focus on distinguishing the true splice sites from those pseudo ones. Such an approach will lead to a decrease in false positives; however, it will result in non-canonical splice sites missing. Result We have designed SpliceFinder based on convolutional neural network (CNN) to predict splice sites. To achieve the ab initio prediction, we used human genomic data to train our neural network. An iterative approach is adopted to reconstruct the dataset, which tackles the data unbalance problem and forces the model to learn more features of splice sites. The proposed CNN obtains the classification accuracy of 90.25%, which is 10% higher than the existing algorithms. The method outperforms other existing methods in terms of area under receiver operating characteristics (AUC), recall, precision, and F1 score. Furthermore, SpliceFinder can find the exact position of splice sites on long genomic sequences with a sliding window. Compared with other state-of-the-art splice site prediction tools, SpliceFinder generates results in about half lower false positive while keeping recall higher than 0.8. Also, SpliceFinder captures the non-canonical splice sites. In addition, SpliceFinder performs well on the genomic sequences of Drosophila melanogaster, Mus musculus, Rattus, and Danio rerio without retraining. Conclusion Based on CNN, we have proposed a new ab initio splice site prediction tool, SpliceFinder, which generates less false positives and can detect non-canonical splice sites. Additionally, SpliceFinder is transferable to other species without retraining. The source code and additional materials are available at https://gitlab.deepomics.org/wangruohan/SpliceFinder.

2020 ◽  
Vol 18 (04) ◽  
pp. 2050024
Author(s):  
Santhosh Amilpur ◽  
Raju Bhukya

Splice site prediction is crucial for understanding underlying gene regulation, gene function for better genome annotation. Many computational methods exist for recognizing the splice sites. Although most of the methods achieve a competent performance, their interpretability remains challenging. Moreover, all traditional machine learning methods manually extract features, which is tedious job. To address these challenges, we propose a deep learning-based approach (EDeepSSP) that employs convolutional neural networks (CNNs) architecture for automatic feature extraction and effectively predicts splice sites. Our model, EDeepSSP, divulges the opaque nature of CNN by extracting significant motifs and explains why these motifs are vital for predicting splice sites. In this study, experiments have been conducted on six benchmark acceptors and donor datasets of humans, cress, and fly. The results show that EDeepSSP has outperformed many state-of-the-art approaches. EDeepSSP achieves the highest area under the receiver operating characteristic curve (AUC_ROC) and area under the precision-recall curve (AUC_PR) of 99.32% and 99.26% on human donor datasets, respectively. We also analyze various filter activities, feature activations, and extracted significant motifs responsible for the splice site prediction. Further, we validate the learned motifs of our model against known motifs of JASPAR splice site database.


2021 ◽  
Vol 7 (2) ◽  
pp. 356-362
Author(s):  
Harry Coppock ◽  
Alex Gaskell ◽  
Panagiotis Tzirakis ◽  
Alice Baird ◽  
Lyn Jones ◽  
...  

BackgroundSince the emergence of COVID-19 in December 2019, multidisciplinary research teams have wrestled with how best to control the pandemic in light of its considerable physical, psychological and economic damage. Mass testing has been advocated as a potential remedy; however, mass testing using physical tests is a costly and hard-to-scale solution.MethodsThis study demonstrates the feasibility of an alternative form of COVID-19 detection, harnessing digital technology through the use of audio biomarkers and deep learning. Specifically, we show that a deep neural network based model can be trained to detect symptomatic and asymptomatic COVID-19 cases using breath and cough audio recordings.ResultsOur model, a custom convolutional neural network, demonstrates strong empirical performance on a data set consisting of 355 crowdsourced participants, achieving an area under the curve of the receiver operating characteristics of 0.846 on the task of COVID-19 classification.ConclusionThis study offers a proof of concept for diagnosing COVID-19 using cough and breath audio signals and motivates a comprehensive follow-up research study on a wider data sample, given the evident advantages of a low-cost, highly scalable digital COVID-19 diagnostic tool.


Sign in / Sign up

Export Citation Format

Share Document