mrna secondary structure
Recently Published Documents


TOTAL DOCUMENTS

108
(FIVE YEARS 17)

H-INDEX

28
(FIVE YEARS 3)

2021 ◽  
Vol 8 (1) ◽  
pp. 1-9
Author(s):  
I. L. Baranovskaya ◽  
M. V. Sergeeva ◽  
A. S. Taraskin ◽  
A. A. Lozhkov ◽  
A. V. Vasin

The influenza A virus genome consists of eight segments of negative-sense RNA that encode up to 18 proteins. During the process of viral replication, positive-sense (+)RNA (cRNA) or messenger RNA (mRNA) is synthesized. Today, there is only a partial understanding of the function of several secondary structures within vRNA and cRNA promoters, and splice sites in the M and NS genes. The most precise secondary structure of (+)RNA has been determined for the NS segment of influenza A virus.  The influenza A virus NS gene features two regions with a conserved mRNA secondary structure located near splice sites. Here, we compared 4 variants of the A/Puerto Rico/8/1934 strain featuring different combinations of secondary structures at the NS segment (+)RNA regions 82-148 and 497-564. We found that RNA structures did not affect viral replication in cell culture. However, one of the viruses demonstrated lower NS1 and NEP expression levels during early stage cell infection as well as reduced pathogenicity in mice compared to other variants. In particular, this virus is characterized by an RNA hairpin in the 82-148 region and a stable hairpin in the 497-564 region.


2021 ◽  
Author(s):  
Mengmeng Wang ◽  
Jinyu Gu ◽  
Chong Shen ◽  
Wuzhuang Tang ◽  
Xiaoru Xing ◽  
...  

Abstract Compelling Convincing evidence has shown that microRNAs (miRNAs) are involved in the pathogenesis of stroke. This study aimed to examine whether miRNA biogenesis genes polymorphisms are associated with risk of large artery atherosclerosis (LAA) stroke. Three polymorphisms (DROSHA rs10719 T > C, RAN rs3803012 A > G, and PIWIL1 rs10773771 C > T) were screened by certain criterion. A total of 1785 (710 cases and 1075 controls) study subjects were included in this study. We found that rs10773771 CC genotype was associated with a decreased risk of LAA stroke (CC vs. TT/CT: OR = 0.63, 95% CI = 0.46–0.86, P = 3×10− 3). In silico analysis suggested that rs10773771 can change the mRNA secondary structure of PIWIL1 and affect the binding of the miRNAs and regulatory motifs to the 3'-UTR of PIWIL1. Expression quantitative trait loci analysis showed that rs10773771 could change the expression of PIWIL1 in human skin (P = 1.534×10− 10) and thyroid tissues (P = 4.869×10− 6). These findings suggested that PIWIL1 rs10773771 may be associated with a decreased risk of LAA stroke.


Cells ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 322
Author(s):  
Piotr Gawroński ◽  
Christel Enroth ◽  
Peter Kindgren ◽  
Sebastian Marquardt ◽  
Stanisław Karpiński ◽  
...  

mRNA secondary structure influences translation. Proteins that modulate the mRNA secondary structure around the translation initiation region may regulate translation in plastids. To test this hypothesis, we exposed Arabidopsis thaliana to high light, which induces translation of psbA mRNA encoding the D1 subunit of photosystem II. We assayed translation by ribosome profiling and applied two complementary methods to analyze in vivo RNA secondary structure: DMS-MaPseq and SHAPE-seq. We detected increased accessibility of the translation initiation region of psbA after high light treatment, likely contributing to the observed increase in translation by facilitating translation initiation. Furthermore, we identified the footprint of a putative regulatory protein in the 5′ UTR of psbA at a position where occlusion of the nucleotide sequence would cause the structure of the translation initiation region to open up, thereby facilitating ribosome access. Moreover, we show that other plastid genes with weak Shine-Dalgarno sequences (SD) are likely to exhibit psbA-like regulation, while those with strong SDs do not. This supports the idea that changes in mRNA secondary structure might represent a general mechanism for translational regulation of psbA and other plastid genes.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Yonatan Chemla ◽  
Michael Peeri ◽  
Mathias Luidor Heltberg ◽  
Jerry Eichler ◽  
Mogens Høgh Jensen ◽  
...  

Abstract In bacteria, translation re-initiation is crucial for synthesizing proteins encoded by genes that are organized into operons. The mechanisms regulating translation re-initiation remain, however, poorly understood. We now describe the ribosome termination structure (RTS), a conserved and stable mRNA secondary structure localized immediately downstream of stop codons, and provide experimental evidence for its role in governing re-initiation efficiency in a synthetic Escherichia coli operon. We further report that RTSs are abundant, being associated with 18%–65% of genes in 128 analyzed bacterial genomes representing all phyla, and are selectively depleted when translation re-initiation is advantageous yet selectively enriched so as to insulate translation when re-initiation is deleterious. Our results support a potentially universal role for the RTS in controlling translation termination-insulation and re-initiation across bacteria.


2020 ◽  
Author(s):  
Piotr Gawroński ◽  
Christel Enroth ◽  
Peter Kindgren ◽  
Sebastian Marquardt ◽  
Stanisław Karpiński ◽  
...  

SUMMARYmRNA secondary structure influences translation. Proteins that modulate the mRNA secondary structure around the translation initiation region may regulate translation in plastids. To test this hypothesis, we exposed Arabidopsis thaliana to high light, which induces translation of psbA mRNA encoding the D1 subunit of photosystem II. We assayed translation by ribosome profiling and applied two complementary methods to analyze in vivo RNA secondary structure: DMS-MaPseq and SHAPE-seq. We detected increased accessibility of the translation initiation region of psbA after high light treatment, likely contributing to the observed increase in translation by facilitating translation initiation. Furthermore, we identified the footprint of a putative regulatory protein in the 5’ UTR of psbA at a position where occlusion of the nucleotide sequence would cause the structure of the translation initiation region to open up, thereby facilitating ribosome access. Moreover, we show that other plastid genes with weak Shine-Dalgarno sequences (SD) are likely to exhibit psbA-like regulation, while those with strong SDs do not. This supports the idea that changes in mRNA secondary structure might represent a general mechanism for translational regulation of psbA and other plastid genes.SIGNIFICANCERNA structure changes in the translation initiation region, most likely as a result of protein binding, affect the translation of psbA and possibly other plastid genes with weak Shine-Dalgarno sequences.


2020 ◽  
Author(s):  
Dmitri N. Ermolenko ◽  
David Mathews

AbstractThe 5’ cap and 3’ poly(A) tail of mRNA are known to synergistically regulate mRNA translation and stability. Recent computational and experimental studies revealed that both protein-coding and non-coding RNAs will fold with extensive intramolecular secondary structure, which will result in close distances between the sequence ends. This proximity of the ends is a sequence-independent, universal property of most RNAs. Only low-complexity sequences without guanosines are without secondary structure and exhibit end-to-end distances expected for RNA random coils. The innate proximity of RNA ends might have important biological implications that remain unexplored. In particular, the inherent compactness of mRNA might regulate translation initiation by facilitating the formation of protein complexes that bridge mRNA 5’ and 3’ ends. Additionally, the proximity of mRNA ends might mediate coupling of 3′ deadenylation to 5′ end mRNA decay.


Sign in / Sign up

Export Citation Format

Share Document