scholarly journals End-to-end convolutional neural network enables COVID-19 detection from breath and cough audio: a pilot study

2021 ◽  
Vol 7 (2) ◽  
pp. 356-362
Author(s):  
Harry Coppock ◽  
Alex Gaskell ◽  
Panagiotis Tzirakis ◽  
Alice Baird ◽  
Lyn Jones ◽  
...  

BackgroundSince the emergence of COVID-19 in December 2019, multidisciplinary research teams have wrestled with how best to control the pandemic in light of its considerable physical, psychological and economic damage. Mass testing has been advocated as a potential remedy; however, mass testing using physical tests is a costly and hard-to-scale solution.MethodsThis study demonstrates the feasibility of an alternative form of COVID-19 detection, harnessing digital technology through the use of audio biomarkers and deep learning. Specifically, we show that a deep neural network based model can be trained to detect symptomatic and asymptomatic COVID-19 cases using breath and cough audio recordings.ResultsOur model, a custom convolutional neural network, demonstrates strong empirical performance on a data set consisting of 355 crowdsourced participants, achieving an area under the curve of the receiver operating characteristics of 0.846 on the task of COVID-19 classification.ConclusionThis study offers a proof of concept for diagnosing COVID-19 using cough and breath audio signals and motivates a comprehensive follow-up research study on a wider data sample, given the evident advantages of a low-cost, highly scalable digital COVID-19 diagnostic tool.

2020 ◽  
pp. 147592172096544
Author(s):  
Aravinda S Rao ◽  
Tuan Nguyen ◽  
Marimuthu Palaniswami ◽  
Tuan Ngo

With the growing number of aging infrastructure across the world, there is a high demand for a more effective inspection method to assess its conditions. Routine assessment of structural conditions is a necessity to ensure the safety and operation of critical infrastructure. However, the current practice to detect structural damages, such as cracks, depends on human visual observation methods, which are prone to efficiency, cost, and safety concerns. In this article, we present an automated detection method, which is based on convolutional neural network models and a non-overlapping window-based approach, to detect crack/non-crack conditions of concrete structures from images. To this end, we construct a data set of crack/non-crack concrete structures, comprising 32,704 training patches, 2074 validation patches, and 6032 test patches. We evaluate the performance of our approach using 15 state-of-the-art convolutional neural network models in terms of number of parameters required to train the models, area under the curve, and inference time. Our approach provides over 95% accuracy and over 87% precision in detecting the cracks for most of the convolutional neural network models. We also show that our approach outperforms existing models in literature in terms of accuracy and inference time. The best performance in terms of area under the curve was achieved by visual geometry group-16 model (area under the curve = 0.9805) and best inference time was provided by AlexNet (0.32 s per image in size of 256 × 256 × 3). Our evaluation shows that deeper convolutional neural network models have higher detection accuracies; however, they also require more parameters and have higher inference time. We believe that this study would act as a benchmark for real-time, automated crack detection for condition assessment of infrastructure.


Diagnostics ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1557
Author(s):  
Byung Wook Choi ◽  
Sungmin Kang ◽  
Hae Won Kim ◽  
Oh Dae Kwon ◽  
Huy Duc Vu ◽  
...  

The aim of this study was to compare the performance of a deep-learning convolutional neural network (Faster R-CNN) model to detect imaging findings suggestive of idiopathic Parkinson’s disease (PD) based on [18F]FP-CIT PET maximum intensity projection (MIP) images versus that of nuclear medicine (NM) physicians. The anteroposterior MIP images of the [18F]FP-CIT PET scan of 527 patients were classified as having PD (139 images) or non-PD (388 images) patterns according to the final diagnosis. Non-PD patterns were classified as overall-normal (ONL, 365 images) and vascular parkinsonism with definite defects or prominently decreased dopamine transporter binding (dVP, 23 images) patterns. Faster R-CNN was trained on 120 PD, 320 ONL, and 16 dVP pattern images and tested on the 19 PD, 45 ONL, and seven dVP patterns images. The performance of the Faster R-CNN and three NM physicians was assessed using receiver operating characteristics curve analysis. The difference in performance was assessed using Cochran’s Q test, and the inter-rater reliability was calculated. Faster R-CNN showed high accuracy in differentiating PD from non-PD patterns and also from dVP patterns, with results comparable to those of NM physicians. There were no significant differences in the area under the curve and performance. The inter-rater reliability among Faster R-CNN and NM physicians showed substantial to almost perfect agreement. The deep-learning model accurately differentiated PD from non-PD patterns on MIP images of [18F]FP-CIT PET, and its performance was comparable to that of NM physicians.


2020 ◽  
Vol 21 (2) ◽  
pp. 467 ◽  
Author(s):  
Zengyan Xie ◽  
Xiaoya Deng ◽  
Kunxian Shu

Protein–protein interaction (PPI) sites play a key role in the formation of protein complexes, which is the basis of a variety of biological processes. Experimental methods to solve PPI sites are expensive and time-consuming, which has led to the development of different kinds of prediction algorithms. We propose a convolutional neural network for PPI site prediction and use residue binding propensity to improve the positive samples. Our method obtains a remarkable result of the area under the curve (AUC) = 0.912 on the improved data set. In addition, it yields much better results on samples with high binding propensity than on randomly selected samples. This suggests that there are considerable false-positive PPI sites in the positive samples defined by the distance between residue atoms.


Author(s):  
Muhaza Liebenlito ◽  
Yanne Irene ◽  
Abdul Hamid

AbstractIn this paper, we use chest x-ray images of Tuberculosis and Pneumonia to diagnose the patient using a convolutional neural network model. We use 4273 images of pneumonia, 1989 images of normal, and 394 images of tuberculosis. The data are divided into 80% as the training set and 20% as the testing set. We do the preprocessing steps to all of our images data, such as resize, converting RGB to grayscale, and Gaussian normalization. On the training dataset, the sampling technique used is undersampling and oversampling to balance each class. The best model was chosen based on the Area under Curve value i.e. the area under the curve of Receiver Operating Characteristics. This method shows that the best model obtains when trains the training dataset using oversampling. The Area under Curve value is 0.99 for tuberculosis and 0.98 for pneumonia. Therefore, this best model succeeds to identify 86% true for tuberculosis and 96% true for pneumonia.Keywords: chest X-ray images; tuberculosis; pneumonia; convolutional neural network.                                                                AbstrakPada penelitian ini memanfaatkan data citra chest x-ray penderita penyakit tuberculosis dan pneumonia. Model convolutional neural network digunakan untuk membantu mendiagnosis kedua penyakit ini. Data yang digunakan masing-masing sudah dilabeli sebanyak 4273 citra pneumonia, 1989 citra normal dan 394 citra tuberculosis. Data tersebut dibagi menjadi 80% himpunan data latih dan 20% data uji. Himpunan data tersebut telah melalui 3 tahap prepocessing yaitu resize citra, merubah citra RGB menjadi grayscale dan standarisasi gausian pada citra. Pada data latih dilakukan teknik sampling berupa undersampling dan oversampling data untuk menyeimbangkan data latih antar kelas. Model terbaik dipilih berdasarkan nilai Area under Curve yaitu luas daerah di bawah kurva Receiver Operating Chracteristics. Hasil menunjukkan bahwa model terbaik dihasilkan ketika dilatih menggunakan data latih hasil oversampling dengan nilai Area under Curve kelas tuberculosis sebesar 0,99 dan nilai Area under Curve kelas pneumonia sebesar 0,98. Oleh karena itu, model terbaik ini mampu mengindentifikasi sebanyak 86% penyakit tuberculosis dan 96% penyakit pneumonia.Kata Kunci: citra chest X-ray; penyakit infeksi paru; pengolahan citra digital Convolutional Neural Network.


2020 ◽  
Vol 2020 ◽  
pp. 1-6
Author(s):  
Jian-ye Yuan ◽  
Xin-yuan Nan ◽  
Cheng-rong Li ◽  
Le-le Sun

Considering that the garbage classification is urgent, a 23-layer convolutional neural network (CNN) model is designed in this paper, with the emphasis on the real-time garbage classification, to solve the low accuracy of garbage classification and recycling and difficulty in manual recycling. Firstly, the depthwise separable convolution was used to reduce the Params of the model. Then, the attention mechanism was used to improve the accuracy of the garbage classification model. Finally, the model fine-tuning method was used to further improve the performance of the garbage classification model. Besides, we compared the model with classic image classification models including AlexNet, VGG16, and ResNet18 and lightweight classification models including MobileNetV2 and SuffleNetV2 and found that the model GAF_dense has a higher accuracy rate, fewer Params, and FLOPs. To further check the performance of the model, we tested the CIFAR-10 data set and found the accuracy rates of the model (GAF_dense) are 0.018 and 0.03 higher than ResNet18 and SufflenetV2, respectively. In the ImageNet data set, the accuracy rates of the model (GAF_dense) are 0.225 and 0.146 higher than Resnet18 and SufflenetV2, respectively. Therefore, the garbage classification model proposed in this paper is suitable for garbage classification and other classification tasks to protect the ecological environment, which can be applied to classification tasks such as environmental science, children’s education, and environmental protection.


2020 ◽  
pp. 1-11
Author(s):  
Jie Liu ◽  
Hongbo Zhao

BACKGROUND: Convolution neural network is often superior to other similar algorithms in image classification. Convolution layer and sub-sampling layer have the function of extracting sample features, and the feature of sharing weights greatly reduces the training parameters of the network. OBJECTIVE: This paper describes the improved convolution neural network structure, including convolution layer, sub-sampling layer and full connection layer. This paper also introduces five kinds of diseases and normal eye images reflected by the blood filament of the eyeball “yan.mat” data set, convenient to use MATLAB software for calculation. METHODSL: In this paper, we improve the structure of the classical LeNet-5 convolutional neural network, and design a network structure with different convolution kernels, different sub-sampling methods and different classifiers, and use this structure to solve the problem of ocular bloodstream disease recognition. RESULTS: The experimental results show that the improved convolutional neural network structure is ideal for the recognition of eye blood silk data set, which shows that the convolution neural network has the characteristics of strong classification and strong robustness. The improved structure can classify the diseases reflected by eyeball bloodstain well.


2021 ◽  
Vol 11 (15) ◽  
pp. 6845
Author(s):  
Abu Sayeed ◽  
Jungpil Shin ◽  
Md. Al Mehedi Hasan ◽  
Azmain Yakin Srizon ◽  
Md. Mehedi Hasan

As it is the seventh most-spoken language and fifth most-spoken native language in the world, the domain of Bengali handwritten character recognition has fascinated researchers for decades. Although other popular languages i.e., English, Chinese, Hindi, Spanish, etc. have received many contributions in the area of handwritten character recognition, Bengali has not received many noteworthy contributions in this domain because of the complex curvatures and similar writing fashions of Bengali characters. Previously, studies were conducted by using different approaches based on traditional learning, and deep learning. In this research, we proposed a low-cost novel convolutional neural network architecture for the recognition of Bengali characters with only 2.24 to 2.43 million parameters based on the number of output classes. We considered 8 different formations of CMATERdb datasets based on previous studies for the training phase. With experimental analysis, we showed that our proposed system outperformed previous works by a noteworthy margin for all 8 datasets. Moreover, we tested our trained models on other available Bengali characters datasets such as Ekush, BanglaLekha, and NumtaDB datasets. Our proposed architecture achieved 96–99% overall accuracies for these datasets as well. We believe our contributions will be beneficial for developing an automated high-performance recognition tool for Bengali handwritten characters.


2020 ◽  
Author(s):  
Sriram Srinivasan ◽  
Shashank A ◽  
vinayakumar R ◽  
Soman KP

In the present era, cyberspace is growing tremendously and the intrusion detection system (IDS) plays a key role in it to ensure information security. The IDS, which works in network and host level, should be capable of identifying various malicious attacks. The job of network-based IDS is to differentiate between normal and malicious traffic data and raise an alert in case of an attack. Apart from the traditional signature and anomaly-based approaches, many researchers have employed various deep learning (DL) techniques for detecting intrusion as DL models are capable of extracting salient features automatically from the input data. The application of deep convolutional neural network (DCNN), which is utilized quite often for solving research problems in image processing and vision fields, is not explored much for IDS. In this paper, a DCNN architecture for IDS which is trained on KDDCUP 99 data set is proposed. This work also shows that the DCNN-IDS model performs superior when compared with other existing works.


Inventions ◽  
2021 ◽  
Vol 6 (4) ◽  
pp. 70
Author(s):  
Elena Solovyeva ◽  
Ali Abdullah

In this paper, the structure of a separable convolutional neural network that consists of an embedding layer, separable convolutional layers, convolutional layer and global average pooling is represented for binary and multiclass text classifications. The advantage of the proposed structure is the absence of multiple fully connected layers, which is used to increase the classification accuracy but raises the computational cost. The combination of low-cost separable convolutional layers and a convolutional layer is proposed to gain high accuracy and, simultaneously, to reduce the complexity of neural classifiers. Advantages are demonstrated at binary and multiclass classifications of written texts by means of the proposed networks under the sigmoid and Softmax activation functions in convolutional layer. At binary and multiclass classifications, the accuracy obtained by separable convolutional neural networks is higher in comparison with some investigated types of recurrent neural networks and fully connected networks.


Sign in / Sign up

Export Citation Format

Share Document