scholarly journals Effect of APOE ε4 on multimodal brain connectomic traits: a persistent homology study

2020 ◽  
Vol 21 (S21) ◽  
Author(s):  
Jin Li ◽  
◽  
Chenyuan Bian ◽  
Dandan Chen ◽  
Xianglian Meng ◽  
...  

Abstract Background Although genetic risk factors and network-level neuroimaging abnormalities have shown effects on cognitive performance and brain atrophy in Alzheimer’s disease (AD), little is understood about how apolipoprotein E (APOE) ε4 allele, the best-known genetic risk for AD, affect brain connectivity before the onset of symptomatic AD. This study aims to investigate APOE ε4 effects on brain connectivity from the perspective of multimodal connectome. Results Here, we propose a novel multimodal brain network modeling framework and a network quantification method based on persistent homology for identifying APOE ε4-related network differences. Specifically, we employ sparse representation to integrate multimodal brain network information derived from both the resting state functional magnetic resonance imaging (rs-fMRI) data and the diffusion-weighted magnetic resonance imaging (dw-MRI) data. Moreover, persistent homology is proposed to avoid the ad hoc selection of a specific regularization parameter and to capture valuable brain connectivity patterns from the topological perspective. The experimental results demonstrate that our method outperforms the competing methods, and reasonably yields connectomic patterns specific to APOE ε4 carriers and non-carriers. Conclusions We have proposed a multimodal framework that integrates structural and functional connectivity information for constructing a fused brain network with greater discriminative power. Using persistent homology to extract topological features from the fused brain network, our method can effectively identify APOE ε4-related brain connectomic biomarkers.

2016 ◽  
Vol 27 (8) ◽  
pp. 871-885 ◽  
Author(s):  
Golrokh Mirzaei ◽  
Hojjat Adeli

AbstractIn recent years, there has been considerable research interest in the study of brain connectivity using the resting state functional magnetic resonance imaging (rsfMRI). Studies have explored the brain networks and connection between different brain regions. These studies have revealed interesting new findings about the brain mapping as well as important new insights in the overall organization of functional communication in the brain network. In this paper, after a general discussion of brain networks and connectivity imaging, the brain connectivity and resting state networks are described with a focus on rsfMRI imaging in stroke studies. Then, techniques for preprocessing of the rsfMRI for stroke patients are reviewed, followed by brain connectivity processing techniques. Recent research on brain connectivity using rsfMRI is reviewed with an emphasis on stroke studies. The authors hope this paper generates further interest in this emerging area of computational neuroscience with potential applications in rehabilitation of stroke patients.


2011 ◽  
Vol 53 (3) ◽  
pp. 236-245
Author(s):  
M. de la Iglesia-Vayá ◽  
J. Molina-Mateo ◽  
M.J. Escarti-Fabra ◽  
L. Martí-Bonmatí ◽  
M. Robles ◽  
...  

2012 ◽  
Vol 117 (4) ◽  
pp. 868-877 ◽  
Author(s):  
Marieke Niesters ◽  
Najmeh Khalili-Mahani ◽  
Christian Martini ◽  
Leon Aarts ◽  
Joop van Gerven ◽  
...  

Background The influence of psychoactive drugs on the central nervous system has been investigated with positron emission tomography and task-related functional magnetic resonance imaging. However, it is not known how these drugs affect the intrinsic large-scale interactions of the brain (resting-state functional magnetic resonance imaging connectivity). In this study, the effect of low-dose S(+)-ketamine on intrinsic brain connectivity was investigated. Methods Twelve healthy, male volunteers received a 2-h intravenous S(+)-ketamine infusion (first hour 20 mg/70 kg, second hour 40 mg/70 kg). Before, during, and after S(+)-ketamine administration, resting-state brain connectivity was measured. In addition, heat pain tests were performed between imaging sessions to determine ketamine-induced analgesia. A mixed-effects general linear model was used to determine drug and pain effects on resting-state brain connectivity. Results Ketamine increased the connectivity most importantly in the cerebellum and visual cortex in relation to the medial visual network. A decrease in connectivity was observed in the auditory and somatosensory network in relation to regions responsible for pain sensing and the affective processing of pain, which included the amygdala, insula, and anterior cingulate cortex. Connectivity variations related to fluctuations in pain scores were observed in the anterior cingulate cortex, insula, orbitofrontal cortex, and the brainstem, regions involved in descending inhibition of pain. Conclusions Changes in connectivity were observed in the areas that explain ketamine's pharmacodynamic profile with respect to analgesia and psychedelic and other side effects. In addition, pain and ketamine changed brain connectivity in areas involved in endogenous pain modulation.


2019 ◽  
Vol 33 (5) ◽  
pp. 589-605 ◽  
Author(s):  
Erhan Genç ◽  
Christoph Fraenz ◽  
Caroline Schlüter ◽  
Patrick Friedrich ◽  
Manuel C. Voelkle ◽  
...  

Cognitive performance varies widely between individuals and is highly influenced by structural and functional properties of the brain. In the past, neuroscientific research was principally concerned with fluid intelligence, while neglecting its equally important counterpart crystallized intelligence. Crystallized intelligence is defined as the depth and breadth of knowledge and skills that are valued by one's culture. The accumulation of crystallized intelligence is guided by information storage capacities and is likely to be reflected in an individual's level of general knowledge. In spite of the significant role general knowledge plays for everyday life, its neural foundation largely remains unknown. In a large sample of 324 healthy individuals, we used standard magnetic resonance imaging along with functional magnetic resonance imaging and diffusion tensor imaging to examine different estimates of brain volume and brain network connectivity and assessed their predictive power with regard to both general knowledge and fluid intelligence. Our results demonstrate that an individual's level of general knowledge is associated with structural brain network connectivity beyond any confounding effects exerted by age or sex. Moreover, we found fluid intelligence to be best predicted by cortex volume in male subjects and functional network connectivity in female subjects. Combined, these findings potentially indicate different neural architectures for information storage and information processing. © 2019 European Association of Personality Psychology


Sign in / Sign up

Export Citation Format

Share Document