scholarly journals The Neural Architecture of General Knowledge

2019 ◽  
Vol 33 (5) ◽  
pp. 589-605 ◽  
Author(s):  
Erhan Genç ◽  
Christoph Fraenz ◽  
Caroline Schlüter ◽  
Patrick Friedrich ◽  
Manuel C. Voelkle ◽  
...  

Cognitive performance varies widely between individuals and is highly influenced by structural and functional properties of the brain. In the past, neuroscientific research was principally concerned with fluid intelligence, while neglecting its equally important counterpart crystallized intelligence. Crystallized intelligence is defined as the depth and breadth of knowledge and skills that are valued by one's culture. The accumulation of crystallized intelligence is guided by information storage capacities and is likely to be reflected in an individual's level of general knowledge. In spite of the significant role general knowledge plays for everyday life, its neural foundation largely remains unknown. In a large sample of 324 healthy individuals, we used standard magnetic resonance imaging along with functional magnetic resonance imaging and diffusion tensor imaging to examine different estimates of brain volume and brain network connectivity and assessed their predictive power with regard to both general knowledge and fluid intelligence. Our results demonstrate that an individual's level of general knowledge is associated with structural brain network connectivity beyond any confounding effects exerted by age or sex. Moreover, we found fluid intelligence to be best predicted by cortex volume in male subjects and functional network connectivity in female subjects. Combined, these findings potentially indicate different neural architectures for information storage and information processing. © 2019 European Association of Personality Psychology

2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Shihao He ◽  
Ziqi Liu ◽  
Yanchang Wei ◽  
Ran Duan ◽  
Zongsheng Xu ◽  
...  

Abstract Background Asymptomatic Moyamoya disease (MMD) impairs hemodynamic and cognitive function. The relationship between these changes, cerebral blood flow (CBF), and network connectivity remains largely unknown. The aim of this study was to increase understanding of the relationship between CBF, functional networks, and neurocognition in adults with asymptomatic MMD. We compared CBF and functional status in 26 patients with MMD and 20 healthy controls using arterial spin labeling and resting state functional magnetic resonance imaging sequences. At the same time, a detailed cognitive test was performed in 15 patients with no cerebral or lumen infarction who were selected by magnetic resonance imaging-T2 FLAIR screening. Results Compared to the controls, the patients showed varying degrees of decline in their computational ability (simple subtraction, p = 0.009; complex subtraction, p = 0.006) and short-term memory (p = 0.042). The asymptomatic MMD group also showed decreased CBF in the left anterior central and left inferior frontal gyri of the island flap with multiple node abnormalities in the brain network and reduced network connectivity. There was a significant association of these changes with cognitive decline in the MMD group. Conclusions In patients with asymptomatic MMD, disturbance of CBF and impaired brain network connections may be important causes of cognitive decline and appear before clinical symptoms. Clinical trial registration-URL: http://www.chictr.org.cn Unique identifier: ChiCTR1900023610


2020 ◽  
Vol 21 (S21) ◽  
Author(s):  
Jin Li ◽  
◽  
Chenyuan Bian ◽  
Dandan Chen ◽  
Xianglian Meng ◽  
...  

Abstract Background Although genetic risk factors and network-level neuroimaging abnormalities have shown effects on cognitive performance and brain atrophy in Alzheimer’s disease (AD), little is understood about how apolipoprotein E (APOE) ε4 allele, the best-known genetic risk for AD, affect brain connectivity before the onset of symptomatic AD. This study aims to investigate APOE ε4 effects on brain connectivity from the perspective of multimodal connectome. Results Here, we propose a novel multimodal brain network modeling framework and a network quantification method based on persistent homology for identifying APOE ε4-related network differences. Specifically, we employ sparse representation to integrate multimodal brain network information derived from both the resting state functional magnetic resonance imaging (rs-fMRI) data and the diffusion-weighted magnetic resonance imaging (dw-MRI) data. Moreover, persistent homology is proposed to avoid the ad hoc selection of a specific regularization parameter and to capture valuable brain connectivity patterns from the topological perspective. The experimental results demonstrate that our method outperforms the competing methods, and reasonably yields connectomic patterns specific to APOE ε4 carriers and non-carriers. Conclusions We have proposed a multimodal framework that integrates structural and functional connectivity information for constructing a fused brain network with greater discriminative power. Using persistent homology to extract topological features from the fused brain network, our method can effectively identify APOE ε4-related brain connectomic biomarkers.


2021 ◽  
Vol 12 ◽  
Author(s):  
Xiaojun Huang ◽  
Zhipeng Wu ◽  
Zhening Liu ◽  
Dayi Liu ◽  
Danqing Huang ◽  
...  

Betel quid (BQ) is one of the most popular addictive substances in the world. However, the neurophysiological mechanism underlying BQ addiction remains unclear. This study aimed to investigate whether and how BQ chewing would affect brain function in the framework of a dynamic brain network model. Resting-state functional magnetic resonance imaging scans were collected from 24 male BQ-dependent individuals and 26 male non-addictive healthy individuals before and promptly after chewing BQ. Switching rate, a measure of temporal stability of functional brain networks, was calculated at both global and local levels for each scan. The results showed that BQ-dependent and healthy groups did not significantly differ on switching rate before BQ chewing (F = 0.784, p = 0.381, analysis of covariance controlling for age, education, and head motion). After chewing BQ, both BQ-dependent (t = 2.674, p = 0.014, paired t-test) and healthy (t = 2.313, p = 0.029, paired t-test) individuals showed a significantly increased global switching rate compared to those before chewing BQ. Significant corresponding local-level effects were observed within the occipital areas for both groups, and within the cingulo-opercular, fronto-parietal, and cerebellum regions for BQ-dependent individuals. Moreover, in BQ-dependent individuals, switching rate was significantly correlated with the severity of BQ addiction assessed by the Betel Quid Dependence Scale scores (Spearman's rho = 0.471, p = 0.020) before BQ chewing. Our study provides preliminary evidence for the acute effects of BQ chewing on brain functional dynamism. These findings may provide insights into the neural mechanisms of substance addictions.


Sign in / Sign up

Export Citation Format

Share Document