scholarly journals Chloroplast genome variation and phylogenetic relationships of Atractylodes species

BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Yiheng Wang ◽  
Sheng Wang ◽  
Yanlei Liu ◽  
Qingjun Yuan ◽  
Jiahui Sun ◽  
...  

Abstract Background Atractylodes DC is the basic original plant of the widely used herbal medicines “Baizhu” and “Cangzhu” and an endemic genus in East Asia. Species within the genus have minor morphological differences, and the universal DNA barcodes cannot clearly distinguish the systemic relationship or identify the species of the genus. In order to solve these question, we sequenced the chloroplast genomes of all species of Atractylodes using high-throughput sequencing. Results The results indicate that the chloroplast genome of Atractylodes has a typical quadripartite structure and ranges from 152,294 bp (A. carlinoides) to 153,261 bp (A. macrocephala) in size. The genome of all species contains 113 genes, including 79 protein-coding genes, 30 transfer RNA genes and four ribosomal RNA genes. Four hotspots, rpl22-rps19-rpl2, psbM-trnD, trnR-trnT(GGU), and trnT(UGU)-trnL, and a total of 42–47 simple sequence repeats (SSR) were identified as the most promising potentially variable makers for species delimitation and population genetic studies. Phylogenetic analyses of the whole chloroplast genomes indicate that Atractylodes is a clade within the tribe Cynareae; Atractylodes species form a monophyly that clearly reflects the relationship within the genus. Conclusions Our study included investigations of the sequences and structural genomic variations, phylogenetics and mutation dynamics of Atractylodes chloroplast genomes and will facilitate future studies in population genetics, taxonomy and species identification.

2021 ◽  
Author(s):  
Yiheng Wang ◽  
Sheng Wang ◽  
Yanlei Liu ◽  
Qingjun Yuan ◽  
Jiahui Sun ◽  
...  

Abstract Background: Atractylodes DC is the basic original plant of the widely used herbal medicines “Baizhu” and “Cangzhu” and an endemic genus in East Asia. Species within the genus have minor morphological differences, and the universal DNA barcodes cannot clearly distinguish the systemic relationship or identify the species of the genus. In order to solve these question, we sequenced the chloroplast genomes of all species of Atractylodes using high-throughput sequencing.Results: The results indicate that the chloroplast genome of Atractylodes has a typical quadripartite structure and ranges from 152,294 bp (A. carlinoides) to 153,261 bp (A. macrocephala) in size. The genome of all species contains 113 genes, including 79 protein-coding genes, 30 transfer RNA genes and four ribosomal RNA genes. Four hotspots, rpl22-rps19-rpl2, psbM-trnD, trnR-trnT(GGU), and trnT(UGU)-trnL, and a total of 42-47 simple sequence repeats (SSR) were identified as the most promising potentially variable makers for species delimitation and population genetic studies. Phylogenetic analyses of the whole chloroplast genomes indicate that Atractylodes is a clade within the tribe Cynareae; Atractylodes species form a monophyly that clearly reflects the relationship within the genus. Conclusions: Our study included investigations of the sequences and structural genomic variations, phylogenetics and mutation dynamics of Atractylodes chloroplast genomes and will facilitate future studies in population genetics, taxonomy and species identification.


2020 ◽  
Author(s):  
yiheng wang ◽  
Sheng Wang ◽  
Yanlei Liu ◽  
Qingjun Yuan ◽  
Jiahui Sun ◽  
...  

Abstract Atractylodes DC is the basic original plant of the widely used herbal medicines “Baizhu” and “Cangzhu” and an endemic genus in East Asia. Species within the genus have minor morphological differences, and the universal DNA barcodes cannot clearly distinguish the systemic relationship or identify the species of the genus. In this study, we sequenced the chloroplast genomes of all species of Atractylodes using high-throughput sequencing. The results indicate that the chloroplast genome of Atractylodes has a typical quadripartite structure and ranges from 152,294 bp (A. carlinoides) to 153,261 bp (A. macrocephala) in size. The genome of all species contains 113 genes, including 79 protein-coding genes, 30 transfer RNA genes and four ribosomal RNA genes. Four hotspots, rpl22-rps19-rpl2, psbM-trnD, trnR-trnT(GGU), and trnT(UGU)-trnL, and a total of 42-47 simple sequence repeats (SSR) were identified as the most promising potentially variable makers for species delimitation and population genetic studies. Phylogenetic analyses of the whole chloroplast genomes indicate that Atractylodes is a clade within the tribe Cynareae; Atractylodes species form a monophyly that clearly reflects the relationship within the genus. Our study included investigations of the sequences and structural genomic variations, phylogenetics and mutation dynamics of Atractylodes chloroplast genomes and will facilitate future studies in population genetics, taxonomy and species identification.


2020 ◽  
Author(s):  
yiheng wang ◽  
Sheng Wang ◽  
Yanlei Liu ◽  
Qingjun Yuan ◽  
Jiahui Sun ◽  
...  

Abstract Background:Atractylodes DC is the basic original plant of the widely used herbal medicines “Baizhu” and “Cangzhu” and an endemic genus in East Asia. Species within the genus have minor morphological differences, and the universal DNA barcodes cannot clearly distinguish the systemic relationship or identify the species of the genus. In order to solve these question, we sequenced the chloroplast genomes of all species of Atractylodes using high-throughput sequencing.Results: The results indicate that the chloroplast genome of Atractylodes has a typical quadripartite structure and ranges from 152,294 bp (A. carlinoides) to 153,261 bp (A. macrocephala) in size. The genome of all species contains 113 genes, including 79 protein-coding genes, 30 transfer RNA genes and four ribosomal RNA genes. Four hotspots, rpl22-rps19-rpl2, psbM-trnD, trnR-trnT(GGU), and trnT(UGU)-trnL, and a total of 42-47 simple sequence repeats (SSR) were identified as the most promising potentially variable makers for species delimitation and population genetic studies. Phylogenetic analyses of the whole chloroplast genomes indicate that Atractylodes is a clade within the tribe Cynareae; Atractylodes species form a monophyly that clearly reflects the relationship within the genus. Conclusions: Our study included investigations of the sequences and structural genomic variations, phylogenetics and mutation dynamics of Atractylodes chloroplast genomes and will facilitate future studies in population genetics, taxonomy and species identification.


Forests ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 744
Author(s):  
Yunyan Zhang ◽  
Yongjing Tian ◽  
David Y. P. Tng ◽  
Jingbo Zhou ◽  
Yuntian Zhang ◽  
...  

Litsea Lam. is an ecological and economic important genus of the “core Lauraceae” group in the Lauraceae. The few studies to date on the comparative chloroplast genomics and phylogenomics of Litsea have been conducted as part of other studies on the Lauraceae. Here, we sequenced the whole chloroplast genome sequence of Litsea auriculata, an endangered tree endemic to eastern China, and compared this with previously published chloroplast genome sequences of 11 other Litsea species. The chloroplast genomes of the 12 Litsea species ranged from 152,132 (L. szemaois) to 154,011 bp (L. garrettii) and exhibited a typical quadripartite structure with conserved genome arrangement and content, with length variations in the inverted repeat regions (IRs). No codon usage preferences were detected within the 30 codons used in the chloroplast genomes, indicating a conserved evolution model for the genus. Ten intergenic spacers (psbE–petL, trnH–psbA, petA–psbJ, ndhF–rpl32, ycf4–cemA, rpl32–trnL, ndhG–ndhI, psbC–trnS, trnE–trnT, and psbM–trnD) and five protein coding genes (ndhD, matK, ccsA, ycf1, and ndhF) were identified as divergence hotspot regions and DNA barcodes of Litsea species. In total, 876 chloroplast microsatellites were located within the 12 chloroplast genomes. Phylogenetic analyses conducted using the 51 additional complete chloroplast genomes of “core Lauraceae” species demonstrated that the 12 Litsea species grouped into four sub-clades within the Laurus-Neolitsea clade, and that Litsea is polyphyletic and closely related to the genera Lindera and Laurus. Our phylogeny strongly supported the monophyly of the following three clades (Laurus–Neolitsea, Cinnamomum–Ocotea, and Machilus–Persea) among the above investigated “core Lauraceae” species. Overall, our study highlighted the taxonomic utility of chloroplast genomes in Litsea, and the genetic markers identified here will facilitate future studies on the evolution, conservation, population genetics, and phylogeography of L. auriculata and other Litsea species.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Wenbin Xu ◽  
Boshun Xia ◽  
Xinwei Li

AbstractThe six pinnate-leaved species are a very particular group in the genus Primula. In the present paper, we sequenced, assembled and annotated the chloroplast genomes of five of them (P. cicutarrifolia, P. hubeiensis, P. jiugongshanensis, P. merrilliana, P. ranunculoides). The five chloroplast genomes ranged from ~ 150 to 152 kb, containing 113 genes (four ribosomal RNA genes, 29 tRNA genes and 80 protein-coding genes). The six pinnate-leaved species exhibited synteny of gene order and possessed similar IR boundary regions in chloroplast genomes. The gene accD was pseudogenized in P. filchnerae. In the chloroplast genomes of the six pinnate-leaved Primula species, SSRs, repeating sequences and divergence hotspots were identified; ycf1 and trnH-psbA were the most variable markers among CDSs and noncoding sequences, respectively. Phylogenetic analyses showed that the six Primula species were separated into two distant clades: one was formed by P. filchnerae and P. sinensis and the other clade was consisting of two subclades, one formed by P. hubeiensis and P. ranunculoides, the other by P. merrilliana, P. cicutarrifolia and P. jiugongshanensis. P. hubeiensis was closely related with P. ranunculoides and therefore it should be placed into Sect. Ranunculoides. P. cicutarrifolia did not group first with P. ranunculoides but with P. merrilliana, although the former two were once united in one species, our results supported the separation of P. ranunculoides from P. cicutarrifolia as one distinct species.


Plants ◽  
2020 ◽  
Vol 9 (6) ◽  
pp. 737 ◽  
Author(s):  
Abdullah ◽  
Claudia L. Henriquez ◽  
Furrukh Mehmood ◽  
Iram Shahzadi ◽  
Zain Ali ◽  
...  

The chloroplast genome provides insight into the evolution of plant species. We de novo assembled and annotated chloroplast genomes of four genera representing three subfamilies of Araceae: Lasia spinosa (Lasioideae), Stylochaeton bogneri, Zamioculcas zamiifolia (Zamioculcadoideae), and Orontium aquaticum (Orontioideae), and performed comparative genomics using these chloroplast genomes. The sizes of the chloroplast genomes ranged from 163,770 bp to 169,982 bp. These genomes comprise 113 unique genes, including 79 protein-coding, 4 rRNA, and 30 tRNA genes. Among these genes, 17–18 genes are duplicated in the inverted repeat (IR) regions, comprising 6–7 protein-coding (including trans-splicing gene rps12), 4 rRNA, and 7 tRNA genes. The total number of genes ranged between 130 and 131. The infA gene was found to be a pseudogene in all four genomes reported here. These genomes exhibited high similarities in codon usage, amino acid frequency, RNA editing sites, and microsatellites. The oligonucleotide repeats and junctions JSB (IRb/SSC) and JSA (SSC/IRa) were highly variable among the genomes. The patterns of IR contraction and expansion were shown to be homoplasious, and therefore unsuitable for phylogenetic analyses. Signatures of positive selection were seen in three genes in S. bogneri, including ycf2, clpP, and rpl36. This study is a valuable addition to the evolutionary history of chloroplast genome structure in Araceae.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Wenpan Dong ◽  
Yanlei Liu ◽  
Chao Xu ◽  
Yongwei Gao ◽  
Qingjun Yuan ◽  
...  

Abstract Background Most Distylium species are endangered. Distylium species mostly display homoplasy in their flowers and fruits, and are classified primarily based on leaf morphology. However, leaf size, shape, and serration vary tremendously making it difficult to use those characters to identify most species and a significant challenge to address the taxonomy of Distylium. To infer robust relationships and develop variable markers to identify Distylium species, we sequenced most of the Distylium species chloroplast genomes. Results The Distylium chloroplast genome size was 159,041–159,127 bp and encoded 80 protein-coding, 30 transfer RNAs, and 4 ribosomal RNA genes. There was a conserved gene order and a typical quadripartite structure. Phylogenomic analysis based on whole chloroplast genome sequences yielded a highly resolved phylogenetic tree and formed a monophyletic group containing four Distylium clades. A dating analysis suggested that Distylium originated in the Oligocene (34.39 Ma) and diversified within approximately 1 Ma. The evidence shows that Distylium is a rapidly radiating group. Four highly variable markers, matK-trnK, ndhC-trnV, ycf1, and trnT-trnL, and 74 polymorphic simple sequence repeats were discovered in the Distylium plastomes. Conclusions The plastome sequences had sufficient polymorphic information to resolve phylogenetic relationships and identify Distylium species accurately.


Molecules ◽  
2018 ◽  
Vol 23 (11) ◽  
pp. 2811 ◽  
Author(s):  
Yuxin Zhou ◽  
Jing Nie ◽  
Ling Xiao ◽  
Zhigang Hu ◽  
Bo Wang

Rhubarb is an important ingredient in traditional Chinese medicine known as Rhei radix et rhizome. However, this common name refers to three different botanical species with different pharmacological effects. To facilitate the genetic identification of these three species for their more precise application in Chinese medicine we here want to provide chloroplast sequences with specific identification sites that are easy to amplify. We therefore sequenced the complete chloroplast genomes of all three species and then screened those for suitable sequences describing the three species. The length of the three chloroplast genomes ranged from 161,053 bp to 161,541 bp, with a total of 131 encoded genes including 31 tRNA, eight rRNA and 92 protein-coding sequences. The simple repeat sequence analysis indicated the differences existed in these species, phylogenetic analyses showed the chloroplast genome can be used as an ultra-barcode to distinguish the three botanical species of rhubarb, the variation of the non-coding regions is higher than that of the protein coding regions, and the variations in single-copy region are higher than that in inverted repeat. Twenty-one specific primer pairs were designed and eight specific identification sites were experimentally confirmed that can be used as special DNA barcodes for the identification of the three species based on the highly variable regions. This study provides a molecular basis for precise medicinal plant selection, and supplies the groundwork for the next investigation of the closely related Rheum species comparing and correctly identification on these important medicinal species.


Author(s):  
Luoyun Wang ◽  
Jing Wang ◽  
Caiyun He ◽  
Jianguo Zhang ◽  
Yanfei Zeng

Hippophae is a tree species with ecological, economic and social benefits. In this study, we assembled and annotated chloroplast genomes of sympatric Hippophae gyantsensis and H. rhamnoides subsp. yunnanensis. Their full-length are 155260 and 156415 bp, respectively. Each of them has 131 genes, comprising 85 protein-coding genes, 8 ribosomal RNA genes and 38 transfer RNA genes. After comparing the chloroplast genomes, we found 1302 base difference loci, and 63.29% are located in the intergenic region or intron sequences and 36.71% are located in the coding sequences. The SSC region has the highest mutation rate, followed by the LSC region; the IR regions have the lowest mutation rate. Among the protein-coding genes, three had a ratio of nonsynonymous to synonymous substitutions (Ka/Ks) >1 (but P values were non-significant) and 66 had Ka/Ks <1 (46 were significant). In general, the chloroplast protein-coding genes may be subject to purification selection. Among H. gyantsensis and H. rhamnoides subsp. yunnanensis chloroplast protein-coding genes, there are 20 and 16 optimal codons, respectively. Most of the optimal codons were ending with A or U, which indicates significant AT preference. It is an important reference for studies on the general characteristics and evolution of the Hippophae chloroplast genome.


Forests ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 861
Author(s):  
Huijuan Zhou ◽  
Xiaoxiao Gao ◽  
Keith Woeste ◽  
Peng Zhao ◽  
Shuoxin Zhang

Chloroplast (cp) DNA genomes are traditional workhorses for studying the evolution of species and reconstructing phylogenetic relationships in plants. Species of the genus Castanea (chestnuts and chinquapins) are valued as a source of nuts and timber wherever they grow, and chestnut species hybrids are common. We compared the cp genomes of C. mollissima, C. seguinii, C. henryi, and C. pumila. These cp genomes ranged from 160,805 bp to 161,010 bp in length, comprising a pair of inverted repeat (IR) regions (25,685 to 25,701 bp) separated by a large single-copy (LSC) region (90,440 to 90,560 bp) and a small single-copy (SSC) region (18,970 to 19,049 bp). Each cp genome encoded the same 113 genes; 82–83 protein-coding genes, 30 transfer RNA genes, and four ribosomal RNA genes. There were 18 duplicated genes in the IRs. Comparative analysis of cp genomes revealed that rpl22 was absent in all analyzed species, and the gene ycf1 has been pseudo-genized in all Chinese chestnuts except C. pumlia. We analyzed the repeats and nucleotide substitutions in these plastomes and detected several highly variable regions. The phylogenetic analyses based on plastomes confirmed the monophyly of Castanea species.


Sign in / Sign up

Export Citation Format

Share Document