scholarly journals The mitochondrial genome of Faughnia haani (Stomatopoda): novel organization of the control region and phylogenetic position of the superfamily Parasquilloidea

BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Hee-seung Hwang ◽  
Jongwoo Jung ◽  
Juan Antonio Baeza

Abstract Background Stomatopod crustaceans are aggressive marine predators featuring complex compound eyes and powerful raptorial appendages used for “smashing” or “spearing” prey and/or competitors. Among them, parasquilloids (superfamily Parasquilloidea) possess eyes with 2-3 midband rows of hexagonal ommatidia and spearing appendages. Here, we assembled and analyzed the complete mitochondrial genome of the parasquilloid Faughnia haani and explored family- and superfamily-level phylogenetic relationships within the Stomatopoda based on mitochondrial protein coding genes (PCGs). Results The mitochondrial genome of F. haani is 16,089 bp in length and encodes 13 protein coding genes (PCGs), 22 transfer RNA genes, 2 ribosomal RNA genes, and a control region that is relatively well organized, containing 2 GA-blocks, 4 poly-T stretches, various [TA(A)]n-blocks, and 2 hairpin structures. This organized control region is likely a synapomorphic characteristic in the Stomatopoda. Comparison of the control region among superfamilies shows that parasquilloid species are more similar to gonodactyloids than to squilloids and lysiosquilloids given the presence of various  poly-T stretches between the hairpin structures and [TA(A)]n-blocks. Synteny is identical to that reported for other stomatopods and corresponds to the Pancrustacea ground pattern. A maximum-likelihood phylogenetic tree based on PCGs revealed that Parasquilloidea is sister to Lysiosquilloidea and Gonodactyloidea and not to Squilloidea, contradicting previous phylogenetic studies. Conclusions The novel phylogenetic position of Parasquilloidea revealed by our study indicates that ‘spearing’ raptorial appendages are plesiomorphic and that the ‘smashing’ type is either derived (as reported in previous studies) or apomorphic. Our results raise the possibility that the spearing raptorial claw may have independently evolved twice. The superfamily Parasquilloidea exhibits a closer relationship with other stomatopod superfamilies with a different raptorial claw type and with dissimilar numbers of midband rows of hexagonal ommatidia. Additional studies focusing on the assembly of mitochondrial genomes from species belonging to different genera, families, and superfamilies within the order Stomatopoda are warranted to reach a robust conclusion regarding the evolutionary history of this iconic clade based on mitochondrial PCGs.

PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e7532 ◽  
Author(s):  
Yin-Yin Cai ◽  
Shi-Qi Shen ◽  
Li-Xu Lu ◽  
Kenneth B. Storey ◽  
Dan-Na Yu ◽  
...  

The family Pyxicephalidae including two subfamilies (Cacosterninae and Pyxicephalinae) is an ecologically important group of frogs distributed in sub-Saharan Africa. However, its phylogenetic position among the Anura has remained uncertain. The present study determined the complete mitochondrial genome sequence of Pyxicephalus adspersus, the first representative mitochondrial genome from the Pyxicephalinae, and reconstructed the phylogenetic relationships within Ranoidae using 10 mitochondrial protein-coding genes of 59 frog species. The P. adspersus mitochondrial genome showed major gene rearrangement and an exceptionally long length that is not shared with other Ranoidae species. The genome is 24,317 bp in length, and contains 15 protein-coding genes (including extra COX3 and Cyt b genes), four rRNA genes (including extra 12S rRNA and 16S rRNA genes), 29 tRNA genes (including extra tRNALeu (UAG), tRNALeu (UUR), tRNAThr, tRNAPro, tRNAPhe, tRNAVal, tRNAGln genes) and two control regions (CRs). The Dimer-Mitogenome and Tandem duplication and random loss models were used to explain these gene arrangements. Finally, both Bayesian inference and maximum likelihood analyses supported the conclusion that Pyxicephalidae was monophyletic and that Pyxicephalidae was the sister clade of (Petropedetidae + Ptychadenidae).


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e10364
Author(s):  
Natalia I. Abramson ◽  
Fedor N. Golenishchev ◽  
Semen Yu. Bodrov ◽  
Olga V. Bondareva ◽  
Evgeny A. Genelt-Yanovskiy ◽  
...  

In this article, we present the nearly complete mitochondrial genome of the Subalpine Kashmir vole Hyperacrius fertilis (Arvicolinae, Cricetidae, Rodentia), assembled using data from Illumina next-generation sequencing (NGS) of the DNA from a century-old museum specimen. De novo assembly consisted of 16,341 bp and included all mitogenome protein-coding genes as well as 12S and 16S RNAs, tRNAs and D-loop. Using the alignment of protein-coding genes of 14 previously published Arvicolini tribe mitogenomes, seven Clethrionomyini mitogenomes, and also Ondatra and Dicrostonyx outgroups, we conducted phylogenetic reconstructions based on a dataset of 13 protein-coding genes (PCGs) under maximum likelihood and Bayesian inference. Phylogenetic analyses robustly supported the phylogenetic position of this species within the tribe Arvicolini. Among the Arvicolini, Hyperacrius represents one of the early-diverged lineages. This result of phylogenetic analysis altered the conventional view on phylogenetic relatedness between Hyperacrius and Alticola and prompted the revision of morphological characters underlying the former assumption. Morphological analysis performed here confirmed molecular data and provided additional evidence for taxonomic replacement of the genus Hyperacrius from the tribe Clethrionomyini to the tribe Arvicolini.


2018 ◽  
Author(s):  
Helen. E. Robertson ◽  
Philipp. H. Schiffer ◽  
Maximilian. J. Telford

AbstractThe Dicyemida and Orthonectida are two groups of tiny, simple, vermiform parasites that have historically been united in a group named the Mesozoa. Both Dicyemida and Orthonectida have just two cell layers and appear to lack any defined tissues. They were initially thought to be evolutionary intermediates between protozoans and metazoans but more recent analyses indicate that they are protostomian metazoans that have undergone secondary simplification from a complex ancestor. Here we describe the first almost complete mitochondrial genome sequence from an orthonectid, Intoshia linei, and describe nine and eight mitochondrial protein-coding genes from Dicyema sp. and Dicyema japonicum, respectively. The 14,247 base pair long I. linei sequence has typical metazoan gene content, but is exceptionally AT-rich, and has a divergent gene order compared to other metazoans. The data we present from the Dicyemida provide very limited support for the suggestion that dicyemid mitochondrial genes are found on discrete mini-circles, as opposed to the large circular mitochondrial genomes that are typical across the Metazoa. The cox1 gene from dicyemid species has a series of conserved in-frame deletions that is unique to this lineage. Using cox1 genes from across the genus Dicyema, we report the first internal phylogeny of this group.Key FindingsWe report the first almost-complete mitochondrial genome from an orthonectid parasite, Intoshia linei, including 12 protein-coding genes; 20 tRNAs and putative sequences for large and small subunit rRNAs. We find that the I. linei mitochondrial genome is exceptionally AT-rich and has a novel gene order compared to other published metazoan mitochondrial genomes. These findings are indicative of the rapid rate of evolution that has occurred in the I. linei mitochondrial genome.We also report nine and eight protein-coding genes, respectively, from the dicyemid species Dicyema sp. and Dicyema japonicum, and use the cox1 genes from both species for phylogenetic inference of the internal phylogeny of the dicyemids.We find that the cox1 gene from dicyemids has a series of four conserved in-frame deletions which appear to be unique to this group.


ZooKeys ◽  
2020 ◽  
Vol 945 ◽  
pp. 1-16
Author(s):  
Yuan-An Wu ◽  
Jin-Wei Gao ◽  
Xiao-Fei Cheng ◽  
Min Xie ◽  
Xi-Ping Yuan ◽  
...  

Azygia hwangtsiyui (Trematoda, Azygiidae), a neglected parasite of predatory fishes, is little-known in terms of its molecular epidemiology, population ecology and phylogenetic study. In the present study, the complete mitochondrial genome of A. hwangtsiyui was sequenced and characterized: it is a 13,973 bp circular DNA molecule and encodes 36 genes (12 protein-coding genes, 22 transfer RNA genes, two ribosomal RNA genes) as well as two non-coding regions. The A+T content of the A. hwangtsiyui mitogenome is 59.6% and displays a remarkable bias in nucleotide composition with a negative AT skew (–0.437) and a positive GC skew (0.408). Phylogenetic analysis based on concatenated amino acid sequences of twelve protein-coding genes reveals that A. hwangtsiyui is placed in a separate clade, suggesting that it has no close relationship with any other trematode family. This is the first characterization of the A. hwangtsiyui mitogenome, and the first reported mitogenome of the family Azygiidae. These novel datasets of the A. hwangtsiyui mt genome represent a meaningful resource for the development of mitochondrial markers for the identification, diagnostics, taxonomy, homology and phylogenetic relationships of trematodes.


PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e8274 ◽  
Author(s):  
Dan Chen ◽  
Jing Liu ◽  
Luca Bartolozzi ◽  
Xia Wan

Background The stag beetle Lucanus cervus (Coleoptera: Lucanidae) is widely distributed in Europe. Habitat loss and fragmentation has led to significant reductions in numbers of this species. In this study, we sequenced the complete mitochondrial genome of L. cervus and reconstructed phylogenetic relationships among Lucanidae using complete mitochondrial genome sequences. Methods Raw data sequences were generated by the next generation sequencing using Illumina platform from genomic DNA of L. cervus. The mitochondrial genome was assembled by IDBA and annotated by MITOS. The aligned sequences of mitochondrial genes were partitioned using PartitionFinder 2. Phylogenetic relationships among 19 stag beetle species were constructed using Maximum Likelihood (ML) method implemented in IQ-TREE web server and Bayesian method implemented in PhyloBayes MPI 1.5a. Three scarab beetles were used as outgroups. Results The complete mitochondrial genome of L. cervus is 20,109 bp in length, comprising 13 protein-coding genes, 22 transfer RNA genes, two ribosomal RNAs and a control region. The A + T content is 69.93% for the majority strand. All protein-coding genes start with the typical ATN initiation codons except for cox1, which uses AAT. Phylogenetic analyses based on ML and Bayesian methods shown consistent topologies among Lucanidae.


2018 ◽  
Vol 4 ◽  
Author(s):  
Helen E. Robertson ◽  
Philipp H. Schiffer ◽  
Maximilian J. Telford

Abstract The Dicyemida and Orthonectida are two groups of tiny, simple, vermiform parasites that have historically been united in a group named the Mesozoa. Both Dicyemida and Orthonectida have just two cell layers and appear to lack any defined tissues. They were initially thought to be evolutionary intermediates between protozoans and metazoans but more recent analyses indicate that they are protostomian metazoans that have undergone secondary simplification from a complex ancestor. Here we describe the first almost complete mitochondrial genome sequence from an orthonectid, Intoshia linei, and describe nine and eight mitochondrial protein-coding genes from Dicyema sp. and Dicyema japonicum, respectively. The 14 247 base pair long I. linei sequence has typical metazoan gene content, but is exceptionally AT-rich, and has a unique gene order. The data we have analysed from the Dicyemida provide very limited support for the suggestion that dicyemid mitochondrial genes are found on discrete mini-circles, as opposed to the large circular mitochondrial genomes that are typical of the Metazoa. The cox1 gene from dicyemid species has a series of conserved, in-frame deletions that is unique to this lineage. Using cox1 genes from across the genus Dicyema, we report the first internal phylogeny of this group.


ZooKeys ◽  
2019 ◽  
Vol 879 ◽  
pp. 137-156
Author(s):  
Mingsheng Yang ◽  
Bingyi Hu ◽  
Lin Zhou ◽  
Xiaomeng Liu ◽  
Yuxia Shi ◽  
...  

The complete mitochondrial genome (mitogenome) of Yponomeuta montanatus is sequenced and compared with other published yponomeutoid mitogenomes. The mitogenome is circular, 15,349 bp long, and includes the typical metazoan mitochondrial genes (13 protein-coding genes, two ribosomal RNA genes, and 22 transfer RNA genes) and an A + T-rich region. All 13 protein-coding genes use a typical start codon ATN, the one exception being cox1, which uses CGA across yponomeutoid mitogenomes. Comparative analyses further show that the secondary structures of tRNAs are conserved, including loss of the Dihydorouidine (DHU) arm in trnS1 (AGN), but remarkable nucleotide variation has occurred mainly in the DHU arms and pseudouridine (TψC) loops. A + T-rich regions exhibit substantial length variation among yponomeutoid mitogenomes, and conserved sequence blocks are recognized but some of them are not present in all species. Multiple phylogenetic analyses confirm the position of Y. montanatus in Yponomeutoidea. However, the superfamily-level relationships in the Macroheterocera clade in Lepidoptera recovered herein show considerable difference with that recovered in previous mitogenomic studies, raising the necessity of extensive phylogenetic investigation when more mitogenomes become available for this clade.


Genes ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 125
Author(s):  
Jakub Skorupski

In this paper, a complete mitochondrial genome of the critically endangered European mink Mustela lutreola L., 1761 is reported. The mitogenome was 16,504 bp in length and encoded the typical 13 protein-coding genes, two ribosomal RNA genes and 22 transfer RNA genes, and harboured a putative control region. The A+T content of the entire genome was 60.06% (A > T > C > G), and the AT-skew and GC-skew were 0.093 and −0.308, respectively. The encoding-strand identity of genes and their order were consistent with a collinear gene order characteristic for vertebrate mitogenomes. The start codons of all protein-coding genes were the typical ATN. In eight cases, they were ended by complete stop codons, while five had incomplete termination codons (TA or T). All tRNAs had a typical cloverleaf secondary structure, except tRNASer(AGC) and tRNALys, which lacked the DHU stem and had reduced DHU loop, respectively. Both rRNAs were capable of folding into complex secondary structures, containing unmatched base pairs. Eighty-one single nucleotide variants (substitutions and indels) were identified. Comparative interspecies analyses confirmed the close phylogenetic relationship of the European mink to the so-called ferret group, clustering the European polecat, the steppe polecat and the black-footed ferret. The obtained results are expected to provide useful molecular data, informing and supporting effective conservation measures to save M. lutreola.


2018 ◽  
Author(s):  
Vikas Kumar ◽  
Kaomud Tyagi ◽  
Shantanu Kundu ◽  
Rajasree Chakraborty ◽  
Devkant Singha ◽  
...  

AbstractThe complete mitogenomes in order Thysanoptera is limited to subfamily Thripinae heretofore. In the present study, we sequenced the first mitochondrial genome ofNeohydatothrips samayunkur(15,295 bp), a member of subfamily Sericothripinae. The genome was characterized by 13 protein-coding genes (PCGs), 22 transfer RNA genes (tRNAs), two ribosomal RNA genes (rRNAs) and three control regions (CRs). This mitogenome had two overlapping regions of 4 bp and twenty four intergenic spacers accounting for 165 bp. All the tRNA had typical cloverleaf secondary structures, except fortrnV and trnSwhich lacked DHU stem and loop. The mitogenomes ofN. samayunkurwas highly rearranged with many unique features as compared to other thrips mitogenomes,atp6andnad1were terminated with TAG and TGA stop codons respectively; location oftrnL2,trnA,trnC, andtrnVwas rearranged; and the first control region (CR1) was upstream ofnad6.The phylogenetic analysis of 13 PCGs implementing maximum likelihood and Bayesian inference showed the clustering ofN. samayunkurwithScirtothrips dorsalissupporting theScirtothripsgenus-group and Sericothripinae morphology based relationships. Generation of more mitogenomes from different hierarchical level in the order Thysanoptera is required to understand the gene rearrangements, phylogeny and evolutionary relationships.


Sign in / Sign up

Export Citation Format

Share Document