scholarly journals Exploration of carbohydrate binding behavior and anti-proliferative activities of Arisaema tortuosum lectin

2019 ◽  
Vol 20 (1) ◽  
Author(s):  
Kshema Thakur ◽  
Tarnjeet Kaur ◽  
Manpreet Kaur ◽  
Rachna Hora ◽  
Jatinder Singh
2002 ◽  
Vol 69 ◽  
pp. 59-72 ◽  
Author(s):  
Kurt Drickamer ◽  
Andrew J. Fadden

Many biological effects of complex carbohydrates are mediated by lectins that contain discrete carbohydrate-recognition domains. At least seven structurally distinct families of carbohydrate-recognition domains are found in lectins that are involved in intracellular trafficking, cell adhesion, cell–cell signalling, glycoprotein turnover and innate immunity. Genome-wide analysis of potential carbohydrate-binding domains is now possible. Two classes of intracellular lectins involved in glycoprotein trafficking are present in yeast, model invertebrates and vertebrates, and two other classes are present in vertebrates only. At the cell surface, calcium-dependent (C-type) lectins and galectins are found in model invertebrates and vertebrates, but not in yeast; immunoglobulin superfamily (I-type) lectins are only found in vertebrates. The evolutionary appearance of different classes of sugar-binding protein modules parallels a development towards more complex oligosaccharides that provide increased opportunities for specific recognition phenomena. An overall picture of the lectins present in humans can now be proposed. Based on our knowledge of the structures of several of the C-type carbohydrate-recognition domains, it is possible to suggest ligand-binding activity that may be associated with novel C-type lectin-like domains identified in a systematic screen of the human genome. Further analysis of the sequences of proteins containing these domains can be used as a basis for proposing potential biological functions.


2019 ◽  
Vol 26 (7) ◽  
pp. 494-501 ◽  
Author(s):  
Sameer Suresh Bhagyawant ◽  
Dakshita Tanaji Narvekar ◽  
Neha Gupta ◽  
Amita Bhadkaria ◽  
Ajay Kumar Gautam ◽  
...  

Background: Diabetes and hypertension are the major health concern and alleged to be of epidemic proportions. This has made it a numero uno subject at various levels of investigation. Glucosidase inhibitor provides the reasonable option in treatment of Diabetes Mellitus (DM) as it specifically targets post prandial hyperglycemia. The Angiotensin Converting Enzyme (ACE) plays an important role in hypertension. Therefore, inhibition of ACE in treatment of elevated blood pressure attracts special interest of the scientific community. Chickpea is a food legume and seeds contain carbohydrate binding protein- a lectin. Some of the biological properties of this lectin hitherto been elucidated. Methods: Purified by ion exchange chromatography, chickpea lectin was tested for its in vitro antioxidant, ACE-I inhibitory and anti-diabetic characteristic. Results: Lectin shows a characteristic improvement over the synthetic drugs like acarbose (oral anti-diabetic drug) and captopril (standard antihypertensive drug) when, their IC50 values are compared. Lectin significantly inhibited α-glucosidase and α-amylase in a concentration dependent manner with IC50 values of 85.41 ± 1.21 ҝg/ml and 65.05 ± 1.2 µg/ml compared to acarbose having IC50 70.20 ± 0.47 value of µg/ml and 50.52 ± 1.01 µg/ml respectively. β-Carotene bleaching assay showed antioxidant activity of lectin (72.3%) to be as active as Butylated Hydroxylanisole (BHA). In addition, lectin demonstrated inhibition against ACE-I with IC50 value of 57.43 ± 1.20 µg/ml compared to captopril. Conclusion: Lectin demonstrated its antioxidant character, ACE-I inhibition and significantly inhibitory for α-glucosidase and α-amylase seems to qualify as an anti-hyperglycemic therapeutic molecule. The biological effects of chickpea lectin display potential for reducing the parameters of medically debilitating conditions. These characteristics however needs to be established under in vivo systems too viz. animals through to humans.


2020 ◽  
Vol 21 (11) ◽  
pp. 1085-1096 ◽  
Author(s):  
Rajesh Kumar Gupta ◽  
Girish R. Apte ◽  
Kiran Bharat Lokhande ◽  
Satyendra Mishra ◽  
Jayanta K. Pal

: With the emergence of the novel severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), the whole world is suffering from atypical pneumonia, which resulted in more than 559,047 deaths worldwide. In this time of crisis and urgency, the only hope comes from new candidate vaccines and potential antivirals. However, formulating new vaccines and synthesizing new antivirals are a laborious task. Therefore, considering the high infection rate and mortality due to COVID-19, utilization of previous information, and repurposing of existing drugs against valid viral targets have emerged as a novel drug discovery approach in this challenging time. The transmembrane spike (S) glycoprotein of coronaviruses (CoVs), which facilitates the virus’s entry into the host cells, exists in a homotrimeric form and is covered with N-linked glycans. S glycoprotein is known as the main target of antibodies having neutralizing potency and is also considered as an attractive target for therapeutic or vaccine development. Similarly, targeting of N-linked glycans of S glycoprotein envelope of CoV via carbohydrate-binding agents (CBAs) could serve as an attractive therapeutic approach for developing novel antivirals. CBAs from natural sources like lectins from plants, marine algae and prokaryotes and lectin mimics like Pradimicin-A (PRM-A) have shown antiviral activities against CoV and other enveloped viruses. However, the potential use of CBAs specifically lectins was limited due to unfavorable responses like immunogenicity, mitogenicity, hemagglutination, inflammatory activity, cellular toxicity, etc. Here, we reviewed the current scenario of CBAs as antivirals against CoVs, presented strategies to improve the efficacy of CBAs against CoVs; and studied the molecular interactions between CBAs (lectins and PRM-A) with Man9 by molecular docking for potential repurposing against CoVs in general, and SARSCoV- 2, in particular.


2015 ◽  
Vol 12 (1) ◽  
pp. 69-72
Author(s):  
Hao Li ◽  
Wei Zhang ◽  
Hong-hao Zhou ◽  
Xiao-li Li

Author(s):  
Ali H. Rabbad ◽  
Fisayo A. Olotu ◽  
Mahmoud E. Soliman

Background: The ability of Pseudouridimycin (PUM) to occupy the nucleotide addition site of bacterial RNA Polymerase (RNAP) underlies its inhibitory potency as previously reported. PUM has gained high research interest as a broad-spectrum nucleoside analog that has demonstrated exciting potentials in treating drug-resistant bacterial infections. Objective: Herein, we identified, for the first time, a novel complementary mechanism by which PUM elicits its inhibitory effects on bacterial RNAP. Methods: The dynamic binding behavior of PUM to bacterial RNAP was studied using various dynamic analyses approaches. Results and Discussion: Findings revealed that in addition to occupying the nucleotide addition site, PUM also interrupts the unimpeded entry and exit of DNA by reducing the mechanistic extension of the RNAP cleft and perturbing the primary conformations of the switch regions. Moreover, PUM binding reduced the distances between key residues in the β and β’ subunits that extend to accommodate the DNA. Conclusion: This study’s findings present structural insights that would contribute to the structure-based design of potent and selective PUM inhibitors.


2020 ◽  
Author(s):  
Caitlin LeMae Payblas ◽  
◽  
Omar R. Harvey
Keyword(s):  

2012 ◽  
Vol 55 (11) ◽  
pp. 5121-5129 ◽  
Author(s):  
Ruud P. M. Dings ◽  
Michelle C. Miller ◽  
Irina Nesmelova ◽  
Lucile Astorgues-Xerri ◽  
Nigam Kumar ◽  
...  

1981 ◽  
Vol 256 (8) ◽  
pp. 3890-3893
Author(s):  
I.J. Goldstein ◽  
D.A. Blake ◽  
S. Ebisu ◽  
T.J. Williams ◽  
L.A. Murphy

Sign in / Sign up

Export Citation Format

Share Document