scholarly journals The use of data science to analyse physiology of oxygen delivery in the extracorporeal circulation

2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Marceli Lukaszewski ◽  
Rafal Lukaszewski ◽  
Kinga Kosiorowska ◽  
Marek Jasinski

Abstract Background Recent scientific reports have brought into light a new concept of goal-directed perfusion (GDP) that aims to recreate physiological conditions in which the risk of end-organ malperfusion is minimalized. The aim of our study was to analyse patients’ interim physiology while on cardiopulmonary bypass based on the haemodynamic and tissue oxygen delivery measurements. We also aimed to create a universal formula that may help in further implementation of the GDP concept. Methods We retrospectively analysed patients operated on at the Wroclaw University Hospital between June 2017 and December 2018. Since our observations provided an extensive amount of data, including the patients’ demographics, surgery details and the perfusion-related data, the Data Science methodology was applied. Results A total of 272 (mean age 62.5 ± 12.4, 74% male) cardiac surgery patients were included in the study. To study the relationship between haemodynamic and tissue oxygen parameters, the data for three different values of DO2i (280 ml/min/m2, 330 ml/min/m2 and 380 ml/min/m2), were evaluated. Each set of those lines showed a descending function of CI in Hb concentration for the set DO2i. Conclusions Modern calculation tools make it possible to create a common data platform from a very large database. Using that methodology we created models of haemodynamic compounds describing tissue oxygen delivery. The obtained unique patterns may both allow the adaptation of the flow in relation to the patient’s unique morphology that changes in time and contribute to wider and safer implementation of perfusion strategy which has been tailored to every patient’s individual needs.

2019 ◽  
Author(s):  
Marceli Lukaszewski ◽  
Rafal Lukaszewski ◽  
Kinga Kosiorowska ◽  
Marek Jasinski

Abstract Background Recent scientific reports have brought into light a new concept of goal-directed perfusion (GDP) that aims to recreate physiological conditions in which the risk of end-organ malperfusion is minimalized. The aim of our study was to analyse patients’ interim physiology while on cardiopulmonary bypass based on the haemodynamic and tissue oxygen delivery measurements. We also aimed to create a universal formula that may help in further implementation of the GDP concept. Methods We retrospectively analysed patients operated on at the Wroclaw University Hospital between June 2017 and December 2018. Since our observations provided an extensive amount of data, including the patients' demographics, surgery details and the perfusion-related data, the Data Science methodology was applied. Results A total of 272 (mean age 62.5±12.4, 74% male) cardiac surgery patients were included in the study. To study the relationship between haemodynamic and tissue oxygen parameters, the data for three different values of DO2i (280 ml/min/m2, 330 ml/min/m2 and 380ml/min/m2), were evaluated. Each set of those lines showed a descending function of CI in Hb concentration for the set DO2i. Conclusions Modern calculation tools make it possible to create a common data platform from a very large database. Using that methodology we created models of haemodynamic compounds describing tissue oxygen delivery. The obtained unique patterns may both allow the adaptation of the flow in relation to the patient’s unique morphology that changes in time and contribute to wider and safer implementation of perfusion strategy which has been tailored to every patient’s individual needs.


2019 ◽  
Author(s):  
Marceli Lukaszewski ◽  
Rafal Lukaszewski ◽  
Kinga Kosiorowska ◽  
Marek Jasinski

Abstract Background Recent scientific reports brought into light a new concept of goal-directed perfusion (GDP) that aims to recreate physiological conditions in which the risk of end-organ malperfusion is minimalized. The aim of our study was to analyse patient’s interim physiology while on cardiopulmonary bypass based on the haemodynamic and tissue oxygen delivery measurements. We also aimed to create a universal formula that may help in the further implementation of the GDP concept. Methods We retrospectively analysed patients operated at Wroclaw University Hospital between June 2017 and December 2018. Since our observations provided a huge amount of data, including the patient's demographics, surgery details, and the perfusion-related data, the Data Science methodology was applied. Results A total of 272 (mean age 62.5±12.4, 74% male) cardiac surgery patients were included in the study. To study the relationship between haemodynamic and tissue oxygen parameters, the data for three different values of DO2i (280 ml/min/m2, 330 ml/min/m2 and 380ml/min/m2), were evaluated. Each set of those lines showed a descending function of CI in Hb concentration for the set DO2i. Conclusions Modern calculation tools make it possible to create a common data platform from a very large database. Using that methodology, we created models of haemodynamic compounds describing tissue oxygen delivery. The obtained unique patterns may both allow the adaptation of the flow in relation to the patient’s unique morphology that changes in time and contributes to the wider and safer implementation of tailored to individual patient’s needs perfusion strategy.


2019 ◽  
Author(s):  
Marceli Lukaszewski ◽  
Rafal Lukaszewski ◽  
Kinga Kosiorowska ◽  
Marek Jasinski

Abstract Background Recent scientific reports brought into light a new concept of goal-directed perfusion (GDP) that aims to recreate physiological conditions in which the risk of end-organ malperfusion is minimalized. The aim of our study was to analyse patient’s interim physiology while on cardiopulmonary bypass based on the haemodynamic and tissue oxygen delivery measurements. We also aimed to create a universal formula that may help in the further implementation of the GDP concept. Methods We retrospectively analysed patients operated at Wroclaw University Hospital between June 2017 and December 2018. Since our observations provided a huge amount of data, including the patient's demographics, surgery details, and the perfusion-related data, the Data Science methodology was applied. Results A total of 272 (mean age 62.5±12.4, 74% male) cardiac surgery patients were included in the study. To study the relationship between haemodynamic and tissue oxygen parameters, the data for three different values of DO2i (280 ml/min/m2, 330 ml/min/m2 and 380ml/min/m2), were evaluated. Each set of those lines showed a descending function of CI in Hb concentration for the set DO2i. Conclusions Modern calculation tools make it possible to create a common data platform from a very large database. Using that methodology, we created models of haemodynamic compounds describing tissue oxygen delivery. The obtained unique patterns may both allow the adaptation of the flow in relation to the patient’s unique morphology that changes in time and contributes to the wider and safer implementation of tailored to individual patient’s needs perfusion strategy.


Pulse oximetry 328 When employed correctly, pulse oximetry is a rapid non-invasive method of assessing one of the key components of tissue oxygen delivery: the oxygen saturation of haemoglobin (SaO2). • Based on the laws of light absorbance and optical density (Lambert's law and Beer's law), i.e. the principle that deoxygenated and oxygenated hemoglobin absorb light at different wavelengths....


1976 ◽  
Vol 231 (5) ◽  
pp. 1451-1456 ◽  
Author(s):  
TE Nightingale

Acute isovolemic anemia was produced in anesthetized chickens by serial exchanges of 6% dextran 70 equal to 1% of body weight to quantitate cardiovascular and metabolic parameters. When hematocrit (Hct) and hemoglobin (Hb) levels were reduced by 50% (from 33.3 to 16.3 vol %, and from 10.3 to 5.4 g/100 g, respectively, P less than 0.001), tissue oxygen delivery was maintained by increases in cardiac output (CO), stroke volume (SV), oxygen extraction, and reduced total peripheral resistance (TPR). Heart rate, right atrial pressure, and oxygen consumption (Vo2) were unchanged. Further reductions in Hct and Hb (to 10.8 vol % and 3.7 g/100 g, respectively), were accompanied by cardiovascular failure, as evidenced by falling CO, SV, tissue oxygen delivery, and Vo2. Relative apparent viscosity determinations on the exchanged blood-dextran mixtures indicated that large viscosity changes occurred with the first exchange whereas subsequent exchanges had small incremental viscosity changes. These data indicate that in acutely anemic chickens, oxygen transport capacity was maintained by increased cardiac output and decreased peripheral resistance, unless the severity of the anemia resulted in cardiovascular failure.


2019 ◽  
Vol 127 (6) ◽  
pp. 1548-1561
Author(s):  
Ivo P. Torres Filho ◽  
David Barraza ◽  
Kim Hildreth ◽  
Charnae Williams ◽  
Michael A. Dubick

Local blood flow/oxygen partial pressure (Po2) distributions and flow-Po2 relationships are physiologically relevant. They affect the pathophysiology and treatment of conditions like hemorrhagic shock (HS), but direct noninvasive measures of flow, Po2, and their heterogeneity during prolonged HS are infrequently presented. To fill this void, we report the first quantitative evaluation of flow-Po2 relationships and heterogeneities in normovolemia and during several hours of HS using noninvasive, unbiased, automated acquisition. Anesthetized rats were subjected to tracheostomy, arterial/venous catheterizations, cremaster muscle exteriorization, hemorrhage (40% total blood volume), and laparotomy. Control animals equally instrumented were not subjected to hemorrhage/laparotomy. Every 0.5 h for 4.5 h, noninvasive laser speckle contrast imaging and phosphorescence quenching were employed for nearly 7,000 flow/Po2 measurements in muscles from eight animals, using an automated system. Precise alignment of 16 muscle areas allowed overlapping between flow and oxygenation measurements to evaluate spatial heterogeneity, and repeated measurements were used to estimate temporal heterogeneity. Systemic physiological parameters and blood chemistry were simultaneously assessed by blood samplings replaced with crystalloids. Hemodilution was associated with local hypoxia, but increased flow prevented major oxygen delivery decline. Adding laparotomy and prolonged HS resulted in hypoxia, ischemia, decreased tissue oxygen delivery, and logarithmic flow/Po2 relationships in most regions. Flow and Po2 spatial heterogeneities were higher than their respective temporal heterogeneities, although this did not change significantly over the studied period. This quantitative framework establishes a basis for evaluating therapies aimed at restoring muscle homeostasis, positively impacting outcomes of civilian and military trauma/HS victims. NEW & NOTEWORTHY This is the first study on flow-Po2 relationships during normovolemia, hemodilution, and prolonged hemorrhagic shock using noninvasive methods in multiple skeletal muscle areas of monitored animals. Automated flow/Po2 measurements revealed temporal/spatial heterogeneities, hypoxia, ischemia, and decreased tissue oxygen delivery after trauma/severe hemorrhage. Hemodilution was associated with local hypoxia, but hyperemia prevented a major decline in oxygen delivery. This framework provides a quantitative basis for testing therapeutics that positively impacts muscle homeostasis and outcomes of trauma/hemorrhagic shock victims.


2019 ◽  
Vol 7 (12) ◽  
Author(s):  
Stephen P. Fitzgerald ◽  
Niels Grote Beverborg ◽  
Yves Beguin ◽  
Ferruh Artunc ◽  
Henrik Falhammar ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document