heterogeneous tissue
Recently Published Documents


TOTAL DOCUMENTS

160
(FIVE YEARS 45)

H-INDEX

23
(FIVE YEARS 5)

Author(s):  
Diana Baetscher ◽  
Nicolas Locatelli ◽  
Eugene Won ◽  
Timothy Fitzgerald ◽  
Peter McIntyre ◽  
...  

DNA metabarcoding is used to enumerate and identify taxa in both environmental samples and tissue mixtures. The composition and resolution of metabarcoding data depend on the primer(s) used. Markers that amplify different genes can mitigate biases in primer affinity, amplification efficiency, and reference database resolution, but few empirical studies have evaluated markers for complementary performance. Here, we assess the individual and joint performance of 22 markers for detecting species in a DNA pool of >100 species of primarily marine and freshwater fishes, but also including representatives of elasmobranchs, cephalopods, and crustaceans. Marker performance includes the integrated effect of primer specificity and reference availability. We find that a portfolio of four markers targeting 12S, 16S, and multiple regions of COI identifies 100% of reference taxa to family and nearly 60% to species. We then use the four markers in this portfolio to evaluate metabarcoding of heterogeneous tissue mixtures, using experimental fishmeal to test: 1) the tissue input threshold to ensure detection; 2) how read depth scales with tissue abundance; and 3) the effect of non-target material in the mixture on recovery of target taxa. We consistently detect taxa that make up >1% of fishmeal mixtures and can detect taxa at the lowest input level of 0.01%, but rare taxa (<1%) were detected inconsistently across markers and replicates. Read counts showed weak correlation with tissue input, suggesting they are not a valid proxy for relative abundance. Despite this limitation, our results demonstrate the value of a primer portfolio approach—tailored to the taxa of interest—for detecting and identifying both rare and abundant species in heterogeneous tissue mixtures.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Pere Català ◽  
Nathalie Groen ◽  
Jasmin A. Dehnen ◽  
Eduardo Soares ◽  
Arianne J. H. van Velthoven ◽  
...  

AbstractThe cornea is the clear window that lets light into the eye. It is composed of five layers: epithelium, Bowman’s layer, stroma, Descemet’s membrane and endothelium. The maintenance of its structure and transparency are determined by the functions of the different cell types populating each layer. Attempts to regenerate corneal tissue and understand disease conditions requires knowledge of how cell profiles vary across this heterogeneous tissue. We performed a single cell transcriptomic profiling of 19,472 cells isolated from eight healthy donor corneas. Our analysis delineates the heterogeneity of the corneal layers by identifying cell populations and revealing cell states that contribute in preserving corneal homeostasis. We identified expression of CAV1, HOMER3 and CPVL in the corneal epithelial limbal stem cell niche, CKS2, STMN1 and UBE2C were exclusively expressed in highly proliferative transit amplifying cells, CXCL14 was expressed exclusively in the suprabasal/superficial limbus, and NNMT was exclusively expressed by stromal keratocytes. Overall, this research provides a basis to improve current primary cell expansion protocols, for future profiling of corneal disease states, to help guide pluripotent stem cells into different corneal lineages, and to understand how engineered substrates affect corneal cells to improve regenerative therapies.


2021 ◽  
pp. 633-649
Author(s):  
Petra Kraus ◽  
Kangning Li ◽  
Darren Sipes ◽  
Lara Varden ◽  
Rachel Yerden ◽  
...  

2021 ◽  
Author(s):  
Mira Barda-Saad ◽  
Aviad Ben-Shmuel ◽  
Batel Sabag ◽  
Guy Biber ◽  
Abhishek Puthenveetil ◽  
...  

Natural Killer (NK) cells play a crucial role in immunity, killing virally infected and cancerous cells. The balance of signals initiated upon engagement of activating and inhibitory NK receptors with cognate ligands determines killing or tolerance. Nevertheless, the molecular mechanisms regulating rapid NK cell discrimination between healthy and malignant cells in a heterogeneous tissue environment are incompletely understood. The SHP-1 tyrosine phosphatase is the central negative NK cell regulator, which dephosphorylates key activating signaling proteins. Though the mechanism by which SHP-1 mediates NK cell inhibition has been partially elucidated, the pathways by which SHP-1 is itself regulated remain unclear. Here, we show that phosphorylation of SHP-1 in NK cells on the S591 residue by PKC-θ promotes the inhibited SHP-1 "folded" state. Silencing PKC-θ maintains SHP-1 in the active conformation, reduces NK cell activation and cytotoxicity, and promotes tumor progression in-vivo. This study reveals a molecular pathway that sustains the NK cell activation threshold through suppression of SHP-1 activity.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Su Bin Kim ◽  
In Ho Song ◽  
Yoo Sung Song ◽  
Byung Chul Lee ◽  
Arun Gupta ◽  
...  

Abstract[68Ga]PSMA-11 is a prostate-specific membrane antigen (PSMA)-targeting radiopharmaceutical for diagnostic PET imaging. Its application can be extended to targeted radionuclide therapy (TRT). In this study, we characterize the biodistribution and pharmacokinetics of [68Ga]PSMA-11 in PSMA-positive and negative (22Rv1 and PC3, respectively) tumor-bearing mice and subsequently estimated its internal radiation dosimetry via voxel-level dosimetry using a dedicated Monte Carlo simulation to evaluate the absorbed dose in the tumor directly. Consequently, this approach overcomes the drawbacks of the conventional organ-level (or phantom-based) method. The kidneys and urinary bladder both showed substantial accumulation of [68Ga]PSMA-11 without exhibiting a washout phase during the study. For the tumor, a peak concentration of 4.5 ± 0.7 %ID/g occurred 90 min after [68Ga]PSMA-11 injection. The voxel- and organ-level methods both determined that the highest absorbed dose occurred in the kidneys (0.209 ± 0.005 Gy/MBq and 0.492 ± 0.059 Gy/MBq, respectively). Using voxel-level dosimetry, the absorbed dose in the tumor was estimated as 0.024 ± 0.003 Gy/MBq. The biodistribution and pharmacokinetics of [68Ga]PSMA-11 in various organs of subcutaneous prostate cancer xenograft model mice were consistent with reported data for prostate cancer patients. Therefore, our data supports the use of voxel-level dosimetry in TRT to deliver personalized dosimetry considering patient-specific heterogeneous tissue compositions and activity distributions.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Richard Miallot ◽  
Franck Galland ◽  
Virginie Millet ◽  
Jean-Yves Blay ◽  
Philippe Naquet

AbstractMetabolic rewiring offers novel therapeutic opportunities in cancer. Until recently, there was scant information regarding soft tissue sarcomas, due to their heterogeneous tissue origin, histological definition and underlying genetic history. Novel large-scale genomic and metabolomics approaches are now helping stratify their physiopathology. In this review, we show how various genetic alterations skew activation pathways and orient metabolic rewiring in sarcomas. We provide an update on the contribution of newly described mechanisms of metabolic regulation. We underscore mechanisms that are relevant to sarcomagenesis or shared with other cancers. We then discuss how diverse metabolic landscapes condition the tumor microenvironment, anti-sarcoma immune responses and prognosis. Finally, we review current attempts to control sarcoma growth using metabolite-targeting drugs.


2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Prashant Hariharan ◽  
Jeffrey Sondheimer ◽  
Alexandra Petroj ◽  
Jacob Gluski ◽  
Andrew Jea ◽  
...  

Abstract Background Implantation of ventricular catheters (VCs) to drain cerebrospinal fluid (CSF) is a standard approach to treat hydrocephalus. VCs fail frequently due to tissue obstructing the lumen via the drainage holes. Mechanisms driving obstruction are poorly understood. This study aimed to characterize the histological features of VC obstructions and identify links to clinical factors. Methods 343 VCs with relevant clinical data were collected from five centers. Each hole on the VCs was classified by degree of tissue obstruction after macroscopic analysis. A subgroup of 54 samples was analyzed using immunofluorescent labelling, histology and immunohistochemistry. Results 61.5% of the 343 VCs analyzed had tissue aggregates occluding at least one hole (n = 211) however the vast majority of the holes (70%) showed no tissue aggregates. Mean age at which patients with occluded VCs had their first surgeries (3.25 yrs) was lower than in patients with non-occluded VCs (5.29 yrs, p < 0.02). Mean length of time of implantation of occluded VCs, 33.22 months was greater than for non-occluded VCs, 23.8 months (p = 0.02). Patients with myelomeningocele had a greater probability of having an occluded VC (p = 0.0426). VCs with occlusions had greater numbers of macrophages and astrocytes in comparison to non-occluded VCs (p < 0.01). Microglia comprised only 2–6% of the VC-obstructing tissue aggregates. Histologic analysis showed choroid plexus occlusion in 24%, vascularized glial tissue occlusion in 24%, prevalent lymphocytic inflammation in 29%, and foreign body giant cell reactions in 5% and no ependyma. Conclusion Our data show that age of the first surgery and length of time a VC is implanted are factors that influence the degree of VC obstruction. The tissue aggregates obstructing VCs are composed predominantly of astrocytes and macrophages; microglia have a relatively small presence.


Sign in / Sign up

Export Citation Format

Share Document