scholarly journals Bayesian Hodges-Lehmann tests for statistical equivalence in the two-sample setting: Power analysis, type I error rates and equivalence boundary selection in biomedical research

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Riko Kelter

Abstract Background Null hypothesis significance testing (NHST) is among the most frequently employed methods in the biomedical sciences. However, the problems of NHST and p-values have been discussed widely and various Bayesian alternatives have been proposed. Some proposals focus on equivalence testing, which aims at testing an interval hypothesis instead of a precise hypothesis. An interval hypothesis includes a small range of parameter values instead of a single null value and the idea goes back to Hodges and Lehmann. As researchers can always expect to observe some (although often negligibly small) effect size, interval hypotheses are more realistic for biomedical research. However, the selection of an equivalence region (the interval boundaries) often seems arbitrary and several Bayesian approaches to equivalence testing coexist. Methods A new proposal is made how to determine the equivalence region for Bayesian equivalence tests based on objective criteria like type I error rate and power. Existing approaches to Bayesian equivalence testing in the two-sample setting are discussed with a focus on the Bayes factor and the region of practical equivalence (ROPE). A simulation study derives the necessary results to make use of the new method in the two-sample setting, which is among the most frequently carried out procedures in biomedical research. Results Bayesian Hodges-Lehmann tests for statistical equivalence differ in their sensitivity to the prior modeling, power, and the associated type I error rates. The relationship between type I error rates, power and sample sizes for existing Bayesian equivalence tests is identified in the two-sample setting. Results allow to determine the equivalence region based on the new method by incorporating such objective criteria. Importantly, results show that not only can prior selection influence the type I error rate and power, but the relationship is even reverse for the Bayes factor and ROPE based equivalence tests. Conclusion Based on the results, researchers can select between the existing Bayesian Hodges-Lehmann tests for statistical equivalence and determine the equivalence region based on objective criteria, thus improving the reproducibility of biomedical research.

2019 ◽  
Vol 14 (2) ◽  
pp. 399-425 ◽  
Author(s):  
Haolun Shi ◽  
Guosheng Yin

2014 ◽  
Vol 38 (2) ◽  
pp. 109-112 ◽  
Author(s):  
Daniel Furtado Ferreira

Sisvar is a statistical analysis system with a large usage by the scientific community to produce statistical analyses and to produce scientific results and conclusions. The large use of the statistical procedures of Sisvar by the scientific community is due to it being accurate, precise, simple and robust. With many options of analysis, Sisvar has a not so largely used analysis that is the multiple comparison procedures using bootstrap approaches. This paper aims to review this subject and to show some advantages of using Sisvar to perform such analysis to compare treatments means. Tests like Dunnett, Tukey, Student-Newman-Keuls and Scott-Knott are performed alternatively by bootstrap methods and show greater power and better controls of experimentwise type I error rates under non-normal, asymmetric, platykurtic or leptokurtic distributions.


2021 ◽  
Author(s):  
Megha Joshi ◽  
James E Pustejovsky ◽  
S. Natasha Beretvas

The most common and well-known meta-regression models work under the assumption that there is only one effect size estimate per study and that the estimates are independent. However, meta-analytic reviews of social science research often include multiple effect size estimates per primary study, leading to dependence in the estimates. Some meta-analyses also include multiple studies conducted by the same lab or investigator, creating another potential source of dependence. An increasingly popular method to handle dependence is robust variance estimation (RVE), but this method can result in inflated Type I error rates when the number of studies is small. Small-sample correction methods for RVE have been shown to control Type I error rates adequately but may be overly conservative, especially for tests of multiple-contrast hypotheses. We evaluated an alternative method for handling dependence, cluster wild bootstrapping, which has been examined in the econometrics literature but not in the context of meta-analysis. Results from two simulation studies indicate that cluster wild bootstrapping maintains adequate Type I error rates and provides more power than extant small sample correction methods, particularly for multiple-contrast hypothesis tests. We recommend using cluster wild bootstrapping to conduct hypothesis tests for meta-analyses with a small number of studies. We have also created an R package that implements such tests.


2020 ◽  
Author(s):  
Jeff Miller

Contrary to the warning of Miller (1988), Rousselet and Wilcox (2020) argued that it is better to summarize each participant’s single-trial reaction times (RTs) in a given condition with the median than with the mean when comparing the central tendencies of RT distributions across experimental conditions. They acknowledged that median RTs can produce inflated Type I error rates when conditions differ in the number of trials tested, consistent with Miller’s warning, but they showed that the bias responsible for this error rate inflation could be eliminated with a bootstrap bias correction technique. The present simulations extend their analysis by examining the power of bias-corrected medians to detect true experimental effects and by comparing this power with the power of analyses using means and regular medians. Unfortunately, although bias-corrected medians solve the problem of inflated Type I error rates, their power is lower than that of means or regular medians in many realistic situations. In addition, even when conditions do not differ in the number of trials tested, the power of tests (e.g., t-tests) is generally lower using medians rather than means as the summary measures. Thus, the present simulations demonstrate that summary means will often provide the most powerful test for differences between conditions, and they show what aspects of the RT distributions determine the size of the power advantage for means.


Sign in / Sign up

Export Citation Format

Share Document