inflated type
Recently Published Documents


TOTAL DOCUMENTS

38
(FIVE YEARS 16)

H-INDEX

8
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Christiaan de Leeuw ◽  
Josefin Werme ◽  
Jeanne Savage ◽  
Wouter J Peyrot ◽  
Danielle Posthuma

Transcriptome-wide association studies (TWAS), which aim to detect relationships between gene expression and a phenotype, are commonly used for secondary analysis of genome-wide association study (GWAS) results. Results of TWAS analyses are often interpreted as indicating a genetically mediated relationship between gene expression and the phenotype, but because the traditional TWAS framework does not model the uncertainty in the expression quantitative trait loci (eQTL) effect estimates, this interpretation is not justified. In this study we outline the implications of this issue. Using simulations, we show severely inflated type 1 error rates for TWAS when evaluating a null hypothesis of no genetic relationship between gene expression and the phenotype. Moreover, in our application to real data only 51% of the TWAS associations were confirmed with local genetic correlation analysis, an approach which correctly evaluates the same null. Our results thus demonstrate that TWAS is unsuitable for investigating genetic relationships between gene expression and a phenotype.


2021 ◽  
Author(s):  
Wei Zhou ◽  
Wenjian Bi ◽  
Zhangchen Zhao ◽  
Kushal K. Dey ◽  
Karthik A. Jagadeesh ◽  
...  

UK Biobank has released the whole-exome sequencing (WES) data for 200,000 participants, but the best practices remain unclear for rare variant tests, and an existing approach, SAIGE-GENE, can have inflated type I error rates with high computation cost. Here, we propose SAIGE-GENE+ with greatly improved type I error control and computational efficiency compared to SAIGE-GENE. In the analysis of UKBB WES data of 30 quantitative and 141 binary traits, SAIGE-GENE+ identified 551 gene-phenotype associations. In addition, we showed that incorporating multiple MAF cutoffs and functional annotations can help identify novel gene-phenotype associations and SAIGE-GENE+ can facilitate this.


2021 ◽  
Vol 23 (3) ◽  
Author(s):  
Estelle Chasseloup ◽  
Adrien Tessier ◽  
Mats O. Karlsson

AbstractLongitudinal pharmacometric models offer many advantages in the analysis of clinical trial data, but potentially inflated type I error and biased drug effect estimates, as a consequence of model misspecifications and multiple testing, are main drawbacks. In this work, we used real data to compare these aspects for a standard approach (STD) and a new one using mixture models, called individual model averaging (IMA). Placebo arm data sets were obtained from three clinical studies assessing ADAS-Cog scores, Likert pain scores, and seizure frequency. By randomly (1:1) assigning patients in the above data sets to “treatment” or “placebo,” we created data sets where any significant drug effect was known to be a false positive. Repeating the process of random assignment and analysis for significant drug effect many times (N = 1000) for each of the 40 to 66 placebo-drug model combinations, statistics of the type I error and drug effect bias were obtained. Across all models and the three data types, the type I error was (5th, 25th, 50th, 75th, 95th percentiles) 4.1, 11.4, 40.6, 100.0, 100.0 for STD, and 1.6, 3.5, 4.3, 5.0, 6.0 for IMA. IMA showed no bias in the drug effect estimates, whereas in STD bias was frequently present. In conclusion, STD is associated with inflated type I error and risk of biased drug effect estimates. IMA demonstrated controlled type I error and no bias.


2021 ◽  
pp. 096228022110082
Author(s):  
Yang Li ◽  
Wei Ma ◽  
Yichen Qin ◽  
Feifang Hu

Concerns have been expressed over the validity of statistical inference under covariate-adaptive randomization despite the extensive use in clinical trials. In the literature, the inferential properties under covariate-adaptive randomization have been mainly studied for continuous responses; in particular, it is well known that the usual two-sample t-test for treatment effect is typically conservative. This phenomenon of invalid tests has also been found for generalized linear models without adjusting for the covariates and are sometimes more worrisome due to inflated Type I error. The purpose of this study is to examine the unadjusted test for treatment effect under generalized linear models and covariate-adaptive randomization. For a large class of covariate-adaptive randomization methods, we obtain the asymptotic distribution of the test statistic under the null hypothesis and derive the conditions under which the test is conservative, valid, or anti-conservative. Several commonly used generalized linear models, such as logistic regression and Poisson regression, are discussed in detail. An adjustment method is also proposed to achieve a valid size based on the asymptotic results. Numerical studies confirm the theoretical findings and demonstrate the effectiveness of the proposed adjustment method.


Epigenomics ◽  
2021 ◽  
Author(s):  
Samantha Lent ◽  
Andres Cardenas ◽  
Sheryl L Rifas-Shiman ◽  
Patrice Perron ◽  
Luigi Bouchard ◽  
...  

Aim: We evaluated five methods for detecting differentially methylated regions (DMRs): DMRcate, comb-p, seqlm, GlobalP and dmrff. Materials & methods: We used a simulation study and real data analysis to evaluate performance. Additionally, we evaluated the use of an ancestry-matched reference cohort to estimate correlations between CpG sites in cord blood. Results: Several methods had inflated Type I error, which increased at more stringent significant levels. In power simulations with 1–2 causal CpG sites with the same direction of effect, dmrff was consistently among the most powerful methods. Conclusion: This study illustrates the need for more thorough simulation studies when evaluating novel methods. More work must be done to develop methods with well-controlled Type I error that do not require individual-level data.


2021 ◽  
Author(s):  
Quentin André

When researchers choose to identify and exclude outliers from their data, should they do so across all the data, or within experimental conditions? A survey of recent papers published in the Journal of Experimental Psychology: General shows that both methods are widely used, and common data visualization techniques suggest that outliers should be excluded at the condition-level. However, I highlight in the present paper that removing outliers by condition runs against the logic of hypothesis testing, and that this practice leads to unacceptable increases in false-positive rates. I demonstrate that this conclusion holds true across a variety of statistical tests, exclusion criterion and cutoffs, sample sizes, and data types, and show in simulated experiments and in a re-analysis of existing data that by-condition exclusions can result in false-positive rates as high as 43%. I finally demonstrate that by-condition exclusions are a specific case of a more general issue: Any outlier exclusion procedure that is not blind to the hypothesis that researchers want to test may result in inflated Type I errors. I conclude by offering best practices and recommendations for excluding outliers.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Kip D. Zimmerman ◽  
Mark A. Espeland ◽  
Carl D. Langefeld

AbstractCells from the same individual share common genetic and environmental backgrounds and are not statistically independent; therefore, they are subsamples or pseudoreplicates. Thus, single-cell data have a hierarchical structure that many current single-cell methods do not address, leading to biased inference, highly inflated type 1 error rates, and reduced robustness and reproducibility. This includes methods that use a batch effect correction for individual as a means of accounting for within-sample correlation. Here, we document this dependence across a range of cell types and show that pseudo-bulk aggregation methods are conservative and underpowered relative to mixed models. To compute differential expression within a specific cell type across treatment groups, we propose applying generalized linear mixed models with a random effect for individual, to properly account for both zero inflation and the correlation structure among measures from cells within an individual. Finally, we provide power estimates across a range of experimental conditions to assist researchers in designing appropriately powered studies.


2020 ◽  
Author(s):  
Lior Rennert ◽  
Moonseong Heo ◽  
Alain H Litwin ◽  
Victor de Grutolla

Background: Stepped-wedge designs (SWDs) are currently being used to investigate interventions to reduce opioid overdose deaths in communities located in several states. However, these interventions are competing with external factors such as newly initiated public policies limiting opioid prescriptions, media awareness campaigns, and social distancing orders due to the COVID-19 pandemic. Furthermore, control communities may prematurely adopt components of the proposed intervention as they become widely available. These types of events induce confounding of the intervention effect by time. Such confounding is a well-known limitation of SWDs; a common approach to adjusting for it makes use of a mixed effects modeling framework that includes both fixed and random effects for time. However, these models have several shortcomings when multiple confounding factors are present. Methods: We discuss the limitations of existing methods based on mixed effects models in the context of proposed SWDs to investigate interventions intended to reduce mortality associated with the opioid epidemic, and propose solutions to accommodate deviations from assumptions that underlie these models. We conduct an extensive simulation study of anticipated data from SWD trials targeting the current opioid epidemic in order to examine the performance of these models under different sources of confounding. We specifically examine the impact of factors external to the study and premature adoption of intervention components. Results: When only external factors are present, our simulation studies show that commonly used mixed effects models can result in unbiased estimates of the intervention effect, but have inflated Type 1 error and result in under coverage of confidence intervals. These models are severely biased when confounding factors differentially impact intervention and control clusters; premature adoption of intervention components is an example of this scenario. In these scenarios, models that incorporate fixed intervention-by-time interaction terms and an unstructured covariance for the intervention-by-cluster-by-time random effects result in unbiased estimates of the intervention effect, reach nominal confidence interval coverage, and preserve Type 1 error, but may reduce power. Conclusions: The incorporation of fixed and random time effects in mixed effects models require certain assumptions about the impact of confounding by time in SWD. Violations of these assumptions can result in severe bias of the intervention effect estimate, under coverage of confidence intervals, and inflated Type 1 error. Since model choice has considerable impact on study power as well as validity of results, careful consideration needs to be given to choosing an appropriate model that takes into account potential confounding factors.


2020 ◽  
Author(s):  
Jeff Miller

Contrary to the warning of Miller (1988), Rousselet and Wilcox (2020) argued that it is better to summarize each participant’s single-trial reaction times (RTs) in a given condition with the median than with the mean when comparing the central tendencies of RT distributions across experimental conditions. They acknowledged that median RTs can produce inflated Type I error rates when conditions differ in the number of trials tested, consistent with Miller’s warning, but they showed that the bias responsible for this error rate inflation could be eliminated with a bootstrap bias correction technique. The present simulations extend their analysis by examining the power of bias-corrected medians to detect true experimental effects and by comparing this power with the power of analyses using means and regular medians. Unfortunately, although bias-corrected medians solve the problem of inflated Type I error rates, their power is lower than that of means or regular medians in many realistic situations. In addition, even when conditions do not differ in the number of trials tested, the power of tests (e.g., t-tests) is generally lower using medians rather than means as the summary measures. Thus, the present simulations demonstrate that summary means will often provide the most powerful test for differences between conditions, and they show what aspects of the RT distributions determine the size of the power advantage for means.


Sign in / Sign up

Export Citation Format

Share Document