scholarly journals Fine particulate matter constituents associated with emergency room visits for pediatric asthma: a time-stratified case–crossover study in an urban area

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Yu-Ni Ho ◽  
Fu-Jen Cheng ◽  
Ming-Ta Tsai ◽  
Chih-Min Tsai ◽  
Po-Chun Chuang ◽  
...  

Abstract Background Global asthma-related mortality tallies at around 2.5 million annually. Although asthma may be triggered or exacerbated by particulate matter (PM) exposure, studies investigating the relationship of PM and its components with emergency department (ED) visits for pediatric asthma are limited. This study aimed to estimate the impact of short-term exposure to PM constituents on ED visits for pediatric asthma. Methods We retrospectively evaluated non-trauma patients aged younger than 17 years who visited the ED with a primary diagnosis of asthma. Further, measurements of PM with aerodynamic diameter of < 10 μm (PM10), PM with aerodynamic diameter of < 10 μm (PM2.5), and four PM2.5 components (i.e., nitrate (NO3−), sulfate (SO42−), organic carbon (OC), and elemental carbon (EC)) were collected between 2007 and 2010 from southern particulate matter supersites. These included one core station and two satellite stations in Kaohsiung City, Taiwan. A time-stratified case-crossover study was conducted to analyze the hazard effect of PM. Results Overall, 1597 patients were enrolled in our study. In the single-pollutant model, the estimated risk increase for pediatric asthma incidence on lag 3 were 14.7% [95% confidence interval (CI), 3.2–27.4%], 13.5% (95% CI, 3.3–24.6%), 14.8% (95% CI, 2.5–28.6%), and 19.8% (95% CI, 7.6–33.3%) per interquartile range increments in PM2.5, PM10, nitrate, and OC, respectively. In the two-pollutant models, OC remained significant after adjusting for PM2.5, PM10, and nitrate. During subgroup analysis, children were more vulnerable to PM2.5 and OC during cold days (< 26 °C, interaction p = 0.008 and 0.012, respectively). Conclusions Both PM2.5 concentrations and its chemical constituents OC and nitrate are associated with ED visits for pediatric asthma. Among PM2.5 constituents, OC was most closely related to ED visits for pediatric asthma, and children are more vulnerable to PM2.5 and OC during cold days.

2021 ◽  
Author(s):  
Yu-Ni Ho ◽  
Fu-Jen Cheng ◽  
Ming-Ta Tsai ◽  
Chih-Min Tsai ◽  
Po-Chun Chuang ◽  
...  

Abstract Background Global asthma-related mortality tallies at around 2.5 million annually. Although asthma may be triggered or exacerbated by particulate matter (PM) exposure, studies investigating the relationship of PM and its components with emergency department (ED) visits for pediatric asthma are limited. This study aimed to estimate the impact of short-term exposure to PM constituents on ED visits for pediatric asthma. Methods We retrospectively evaluated non-trauma patients aged younger than 17 years who visited the ED with a primary diagnosis of asthma. Further, measurements of PM10, PM2.5, and four PM2.5 components (i.e., nitrate (NO3−), sulfate (SO42−), organic carbon (OC), and elemental carbon (EC)) were collected between 2007 and 2010 from southern particulate matter supersites. These included one core station and two satellite stations in Kaohsiung City, Taiwan. A time-stratified case‐crossover study was conducted to analyze the hazard effect of PM. Results Overall, 1597 patients were enrolled in our study. In the single-pollutant model, the estimated risk increase for pediatric asthma incidence on lag 3 were 14.7% [95% confidence interval (CI), 3.2–27.4%], 13.5% (95% CI, 3.3–24.6%), 14.8% (95% CI, 2.5–28.6%), and 19.8% (95% CI, 7.6–33.3%) per interquartile range increments in PM2.5, PM10, nitrate, and OC, respectively. In the two-pollutant models, OC remained significant after adjusting for PM2.5, PM10, and nitrate. During subgroup analysis, children were more vulnerable to PM2.5 and OC during cold days (< 26 °C, interaction p = 0.008 and 0.012, respectively). Conclusions Both PM2.5 concentrations and its chemical constituents OC and nitrate are associated with ED visits for pediatric asthma. Among PM2.5 constituents, OC was most closely related to ED visits for pediatric asthma, and children are more vulnerable to PM2.5 and OC during cold days.


2020 ◽  
Author(s):  
Yu-Ni Ho ◽  
Fu-Jen Cheng ◽  
Ming-Ta Tsai ◽  
Chih-Min Tsai ◽  
Po-Chun Chuang ◽  
...  

Abstract Background: Global asthma-related mortality tallies at around 2.5 million annually. Although asthma may be triggered or exacerbated by particulate matter (PM) exposure, studies investigating the relationship of PM and its components with emergency department (ED) visits for pediatric asthma are limited. This study aimed to estimate the impact of short-term exposure to PM constituents on ED visits for pediatric asthma. Methods: We retrospectively evaluated non-trauma patients aged younger than 17 years who visited the ED with a primary diagnosis of asthma. Further, measurements of PM10, PM2.5, and four PM2.5 components (i.e., nitrate (NO3−), sulfate (SO42−), organic carbon (OC), and elemental carbon (EC)) were collected between 2007 and 2010 from southern particulate matter supersites. These included one core station and two satellite stations in Kaohsiung City, Taiwan. A time‐stratified case‐crossover study was conducted to analyze the hazard effect of PM. Results: Overall, 1597 patients were enrolled in our study. In the single-pollutant model, the estimated risk increase for pediatric asthma incidence on lag 3 were 14.7% [95% confidence interval (CI), 3.2–27.4%], 13.5% (95% CI, 3.3–24.6%), 14.8% (95% CI, 2.5–28.6%), and 19.8% (95% CI, 7.6–33.3%) per interquartile range increments in PM2.5, PM10, nitrate, and OC, respectively. In the two-pollutant models, OC remained significant after adjusting for PM2.5, PM10, and nitrate. During subgroup analysis, children were more vulnerable to PM2.5 and OC during cold days (<26°C, interaction p=0.008 and 0.012, respectively). Conclusions: Both PM2.5 concentrations and its chemical constituents OC and nitrate are associated with ED visits for pediatric asthma. Among PM2.5 constituents, OC was most closely related to ED visits for pediatric asthma, and children are more vulnerable to PM2.5 and OC during cold days.


Author(s):  
Ming-Ta Tsai ◽  
Yu-Ni Ho ◽  
Charng-Yen Chiang ◽  
Po-Chun Chuang ◽  
Hsiu-Yung Pan ◽  
...  

Pneumonia, one of the important causes of death in children, may be induced or aggravated by particulate matter (PM). Limited research has examined the association between PM and its constituents and pediatric pneumonia-related emergency department (ED) visits. Measurements of PM2.5, PM10, and four PM2.5 constituents, including elemental carbon (EC), organic carbon (OC), nitrate, and sulfate, were extracted from 2007 to 2010 from one core station and two satellite stations in Kaohsiung City, Taiwan. Furthermore, the medical records of patients under 17 years old who had visited the ED in a medical center and had a diagnosis of pneumonia were collected. We used a time-stratified, case-crossover study design to estimate the effect of PM. The single-pollutant model demonstrated interquartile range increase in PM2.5, PM10, nitrate, OC, and EC on lag 3, which increased the risk of pediatric pneumonia by 18.2% (95% confidence interval (Cl), 8.8‒28.4%), 13.1% (95% CI, 5.1‒21.7%), 29.7% (95% CI, 16.4‒44.5%), 16.8% (95% CI, 4.6‒30.4%), and 14.4% (95% Cl, 6.5‒22.9%), respectively. After PM2.5, PM10, and OC were adjusted for, nitrate and EC remained significant in two-pollutant models. Subgroup analyses revealed that nitrate had a greater effect on children during the warm season (April to September, interaction p = 0.035). In conclusion, pediatric pneumonia ED visit was related to PM2.5 and its constituents. Moreover, PM2.5 constituents, nitrate and EC, were more closely associated with ED visits for pediatric pneumonia, and children seemed to be more susceptible to nitrate during the warm season.


2021 ◽  
pp. 118271
Author(s):  
Yuanyuan Zhang ◽  
Liansheng Zhang ◽  
Jing Wei ◽  
Linjiong Liu ◽  
Yaqi Wang ◽  
...  

Author(s):  
Jiyoung Shin ◽  
Jongmin Oh ◽  
In Sook Kang ◽  
Eunhee Ha ◽  
Wook Bum Pyun

Background/Aim: Previous studies have suggested that the short-term ambient air pollution and temperature are associated with myocardial infarction. In this study, we aimed to conduct a time-series analysis to assess the impact of fine particulate matter (PM2.5) and temperature on acute myocardial infarction (AMI) among adults over 20 years of age in Korea by using the data from the Korean National Health Information Database (KNHID). Methods: The daily data of 192,567 AMI cases in Seoul were collected from the nationwide, population-based KNHID from 2005 to 2014. The monitoring data of ambient PM2.5 from the Seoul Research Institute of Public Health and Environment were also collected. A generalized additive model (GAM) that allowed for a quasi-Poisson distribution was used to analyze the effects of PM2.5 and temperature on the incidence of AMI. Results: The models with PM2.5 lag structures of lag 0 and 2-day averages of lag 0 and 1 (lag 01) showed significant associations with AMI (Relative risk [RR]: 1.011, CI: 1.003–1.020 for lag 0, RR: 1.010, CI: 1.000–1.020 for lag 01) after adjusting the covariates. Stratification analysis conducted in the cold season (October–April) and the warm season (May–September) showed a significant lag 0 effect for AMI cases in the cold season only. Conclusions: In conclusion, acute exposure to PM2.5 was significantly associated with AMI morbidity at lag 0 in Seoul, Korea. This increased risk was also observed at low temperatures.


Author(s):  
Mahmoud Alsaiqali ◽  
Katrien De Troeyer ◽  
Lidia Casas ◽  
Rafiq Hamdi ◽  
Christel Faes ◽  
...  

Purpose: This study assesses the potential acute effects of heatwaves on human morbidities in primary care settings. Methods: We performed a time-stratified case-crossover study to assess the acute effects of heatwaves on selected morbidities in primary care settings in Flanders, Belgium, between 2000 and 2015. We used conditional logistic regression models. We assessed the effect of heatwaves on the day of the event (lag 0) and X days earlier (lags 1 to X). The associations are presented as Incidence Density Ratios (IDR). Results: We included 22,344 events. Heatwaves are associated with increased heat-related morbidities such as heat stroke IDR 3.93 [2.94–5.26] at lag 0, dehydration IDR 3.93 [2.94–5.26] at lag 1, and orthostatic hypotension IDR 2.06 [1.37–3.10] at lag 1. For cardiovascular morbidities studied, there was only an increased risk of stroke at lag 3 IDR 1.45 [1.04–2.03]. There is no significant association with myocardial ischemia/infarction or arrhythmia. Heatwaves are associated with decreased respiratory infection risk. The IDR for upper respiratory infections is 0.82 [0.78–0.87] lag 1 and lower respiratory infections (LRI) is 0.82 [0.74–0.91] at lag 1. There was no significant effect modification by age or premorbid chronic disease (diabetes, hypertesnsion). Conclusion: Heatwaves are associated with increased heat-related morbidities and decreased respiratory infection risk. The study of heatwaves’ effects in primary care settings helps evaluate the impact of heatwaves on the general population. Primary care settings might be not suitable to study acute life-threatening morbidities.


Sign in / Sign up

Export Citation Format

Share Document