scholarly journals Deep learning diagnostic and risk-stratification pattern detection for COVID-19 in digital lung auscultations: clinical protocol for a case–control and prospective cohort study

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Alban Glangetas ◽  
Mary-Anne Hartley ◽  
Aymeric Cantais ◽  
Delphine S. Courvoisier ◽  
David Rivollet ◽  
...  

Abstract Background Lung auscultation is fundamental to the clinical diagnosis of respiratory disease. However, auscultation is a subjective practice and interpretations vary widely between users. The digitization of auscultation acquisition and interpretation is a particularly promising strategy for diagnosing and monitoring infectious diseases such as Coronavirus-19 disease (COVID-19) where automated analyses could help decentralise care and better inform decision-making in telemedicine. This protocol describes the standardised collection of lung auscultations in COVID-19 triage sites and a deep learning approach to diagnostic and prognostic modelling for future incorporation into an intelligent autonomous stethoscope benchmarked against human expert interpretation. Methods A total of 1000 consecutive, patients aged ≥ 16 years and meeting COVID-19 testing criteria will be recruited at screening sites and amongst inpatients of the internal medicine department at the Geneva University Hospitals, starting from October 2020. COVID-19 is diagnosed by RT-PCR on a nasopharyngeal swab and COVID-positive patients are followed up until outcome (i.e., discharge, hospitalisation, intubation and/or death). At inclusion, demographic and clinical data are collected, such as age, sex, medical history, and signs and symptoms of the current episode. Additionally, lung auscultation will be recorded with a digital stethoscope at 6 thoracic sites in each patient. A deep learning algorithm (DeepBreath) using a Convolutional Neural Network (CNN) and Support Vector Machine classifier will be trained on these audio recordings to derive an automated prediction of diagnostic (COVID positive vs negative) and risk stratification categories (mild to severe). The performance of this model will be compared to a human prediction baseline on a random subset of lung sounds, where blinded physicians are asked to classify the audios into the same categories. Discussion This approach has broad potential to standardise the evaluation of lung auscultation in COVID-19 at various levels of healthcare, especially in the context of decentralised triage and monitoring. Trial registration: PB_2016-00500, SwissEthics. Registered on 6 April 2020.

2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Tianqi Tu ◽  
Xueling Wei ◽  
Yue Yang ◽  
Nianrong Zhang ◽  
Wei Li ◽  
...  

Abstract Background Common subtypes seen in Chinese patients with membranous nephropathy (MN) include idiopathic membranous nephropathy (IMN) and hepatitis B virus-related membranous nephropathy (HBV-MN). However, the morphologic differences are not visible under the light microscope in certain renal biopsy tissues. Methods We propose here a deep learning-based framework for processing hyperspectral images of renal biopsy tissue to define the difference between IMN and HBV-MN based on the component of their immune complex deposition. Results The proposed framework can achieve an overall accuracy of 95.04% in classification, which also leads to better performance than support vector machine (SVM)-based algorithms. Conclusion IMN and HBV-MN can be correctly separated via the deep learning framework using hyperspectral imagery. Our results suggest the potential of the deep learning algorithm as a new method to aid in the diagnosis of MN.


GEOMATICA ◽  
2021 ◽  
pp. 1-23
Author(s):  
Roholah Yazdan ◽  
Masood Varshosaz ◽  
Saied Pirasteh ◽  
Fabio Remondino

Automatic detection and recognition of traffic signs from images is an important topic in many applications. At first, we segmented the images using a classification algorithm to delineate the areas where the signs are more likely to be found. In this regard, shadows, objects having similar colours, and extreme illumination changes can significantly affect the segmentation results. We propose a new shape-based algorithm to improve the accuracy of the segmentation. The algorithm works by incorporating the sign geometry to filter out the wrong pixels from the classification results. We performed several tests to compare the performance of our algorithm against those obtained by popular techniques such as Support Vector Machine (SVM), K-Means, and K-Nearest Neighbours. In these tests, to overcome the unwanted illumination effects, the images are transformed into colour spaces Hue, Saturation, and Intensity, YUV, normalized red green blue, and Gaussian. Among the traditional techniques used in this study, the best results were obtained with SVM applied to the images transformed into the Gaussian colour space. The comparison results also suggested that by adding the geometric constraints proposed in this study, the quality of sign image segmentation is improved by 10%–25%. We also comparted the SVM classifier enhanced by incorporating the geometry of signs with a U-Shaped deep learning algorithm. Results suggested the performance of both techniques is very close. Perhaps the deep learning results could be improved if a more comprehensive data set is provided.


Neurology ◽  
2021 ◽  
pp. 10.1212/WNL.0000000000012698
Author(s):  
Ravnoor Singh Gill ◽  
Hyo-Min Lee ◽  
Benoit Caldairou ◽  
Seok-Jun Hong ◽  
Carmen Barba ◽  
...  

Objective.To test the hypothesis that a multicenter-validated computer deep learning algorithm detects MRI-negative focal cortical dysplasia (FCD).Methods.We used clinically-acquired 3D T1-weighted and 3D FLAIR MRI of 148 patients (median age, 23 years [range, 2-55]; 47% female) with histologically-verified FCD at nine centers to train a deep convolutional neural network (CNN) classifier. Images were initially deemed as MRI-negative in 51% of cases, in whom intracranial EEG determined the focus. For risk stratification, the CNN incorporated Bayesian uncertainty estimation as a measure of confidence. To evaluate performance, detection maps were compared to expert FCD manual labels. Sensitivity was tested in an independent cohort of 23 FCD cases (13±10 years). Applying the algorithm to 42 healthy and 89 temporal lobe epilepsy disease controls tested specificity.Results.Overall sensitivity was 93% (137/148 FCD detected) using a leave-one-site-out cross-validation, with an average of six false positives per patient. Sensitivity in MRI-negative FCD was 85%. In 73% of patients, the FCD was among the clusters with the highest confidence; in half it ranked the highest. Sensitivity in the independent cohort was 83% (19/23; average of five false positives per patient). Specificity was 89% in healthy and disease controls.Conclusions.This first multicenter-validated deep learning detection algorithm yields the highest sensitivity to date in MRI-negative FCD. By pairing predictions with risk stratification this classifier may assist clinicians to adjust hypotheses relative to other tests, increasing diagnostic confidence. Moreover, generalizability across age and MRI hardware makes this approach ideal for pre-surgical evaluation of MRI-negative epilepsy.Classification of evidence.This study provides Class III evidence that deep learning on multimodal MRI accurately identifies FCD in epilepsy patients initially diagnosed as MRI-negative.


2021 ◽  
Vol 16 ◽  
pp. 206-210
Author(s):  
S. Muni Rathnam ◽  
G. Siva Koteswara Rao

Watermarking is a today's digital hiding technique within certain electronic content: for example, message, image, video, or audio recordings. Recent times, it was created as a modern copyright security tool. The pattern in zero watermarking technique isn't really inserted directly in the cover image, but has a logical relation with that cover image. In this article, we propose a powerful convolution neural Networks (CNN) and deep learning algorithm-based-watermarking technique in which the CNN produces robust inherent selected features and is merged with the XOR activity of host's watermark sequence. The outcomes of our proposed method present the courage of the watermark counter to many typical image processing techniques.


2021 ◽  
Author(s):  
Tianqi Tu ◽  
Xueling Wei ◽  
Yue Yang ◽  
Nianrong Zhang ◽  
Wei Li ◽  
...  

Abstract Background: Common subtypes seen in Chinese patients with membranous nephropathy (MN) include idiopathic membranous nephropathy (IMN) and hepatitis B virus-related membranous nephropathy (HBV-MN). However, the morphologic differences are not visible under the light microscope in certain renal biopsy tissues. Methods: We propose here a deep learning-based framework for processing hyperspectral images of renal biopsy tissue to define the difference between IMN and HBV-MN based on the component of their immune complex deposition. Results: The proposed framework can achieve an overall accuracy of 95.04% in classification, which also leads to better performance than support vector machine (SVM)-based algorithms. Conclusion: IMN and HBV-MN can be correctly separated via the deep learning framework using hyperspectral imagery. Our results suggest the potential of the deep learning algorithm as a new method to aid in the diagnosis of MN.


2020 ◽  
Author(s):  
Tianqi Tu ◽  
Xueling Wei ◽  
Yue Yang ◽  
Nianrong Zhang ◽  
Wei Li ◽  
...  

Abstract Background:Common subtypes seen in Chinese patients with membranous nephropathy (MN) include idiopathic membranous nephropathy (IMN) and hepatitis B virus-related membranous nephropathy (HBV-MN). However, in some cases, the morphologic differences are not visible under the light microscope in the renal biopsy tissue.Methods:We proposed a deep learning-based framework for processing hyperspectral images of renal biopsy tissue to define the difference between IMN and HBV-MN based on the component of their immune complex deposition.Results: The proposed framework can achieve an overall accuracy of 95.04% for multiclass classification, which also proven to obtain a better performance compared to the support vector machine (SVM)-based algorithms.Conclusion:IMN and HBV-MN could be correctly separated via the deep learning framework using hyperspectral imagery. Our results suggest the potential of the deep learning algorithm as a new method to aid the diagnosis process of MN.


2020 ◽  
Author(s):  
Sanjay Nagaraj ◽  
Tim Q Duong

ABSTRACTAlzheimer Disease (AD) is a progressive neurodegenerative disease that can significantly impair cognition and memory. AD is the leading cause of dementia and affects one in ten people age 65 and older. Current diagnoses methods of AD heavily rely on the use of Magnetic Resonance Imaging (MRI) since non-imaging methods can vary widely leading to inaccurate diagnoses. Furthermore, recent research has revealed a substage of AD, Mild Cognitive Impairment (MCI), that is characterized by symptoms between normal cognition and dementia which makes it more prone to misdiagnosis.A large battery of clinical variables are currently used to detect cognitive impairment and classify early mild cognitive impairment (EMCI), late mild cognitive impairment (LMCI), and AD from cognitive normal (CN) patients. The goal of this study was to derive a simplified risk-stratification algorithm for diagnosis and identify a few significant clinical variables that can accurately classify these four groups using an empirical deep learning approach. Over 100 variables that included neuropsychological/neurocognitive tests, demographics, genetic factors, and blood biomarkers were collected from EMCI, LMCI, AD, and CN patients from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database. Feature engineering was performed with 5 different methods and a neural network was trained on 90% of the data and tested on 10% using 10-fold cross validation. Prediction performance used area under the curve (AUC) of the receiver operating characteristic analysis.The five different feature selection methods consistently yielded the top classifiers to be the Clinical Dementia Rating Scale - Sum of Boxes (CDRSB), Delayed total recall (LDELTOTAL), Modified Preclinical Alzheimer Cognitive Composite with Trails test (mPACCtrailsB), the Modified Preclinical Alzheimer Cognitive Composite with Digit test (mPACCdigit), and Mini-Mental State Examination (MMSE). The best classification model yielded an AUC of 0.984, and the simplified risk-stratification score yielded an AUC of 0.963 on the test dataset.Our results show that this deep-learning algorithm and simplified risk score derived from our deep-learning algorithm accurately diagnose EMCI, LMCI, AD and CN patients using a few commonly available neurocognitive tests. The project was successful in creating an accurate, clinically translatable risk-stratified scoring aid for primary care providers to diagnose AD in a fast and inexpensive manner.


2020 ◽  
Author(s):  
Tianqi Tu ◽  
Xueling Wei ◽  
Yue Yang ◽  
Nianrong Zhang ◽  
Wei Li ◽  
...  

Abstract Background Common subtypes seen in Chinese patients with membranous nephropathy (MN) include idiopathic membranous nephropathy (IMN) and hepatitis B virus-related membranous nephropathy (HBV-MN). However, in some cases, the morphologic differences are not visible under the light microscope in the renal biopsy tissue. Methods We proposed a deep learning-based framework for processing hyperspectral images of renal biopsy tissue to define the difference between IMN and HBV-MN based on the component of their immune complex deposition. Results The proposed framework can achieve an overall accuracy of 95.04% for multiclass classification, which also proven to obtain a better performance compared to the support vector machine (SVM)-based algorithms. Conclusion IMN and HBV-MN could be correctly separated via the deep learning framework using hyperspectral imagery. Our results suggest the potential of the deep learning algorithm as a new method to aid the diagnosis process of MN.


Sign in / Sign up

Export Citation Format

Share Document