scholarly journals Risk Score Stratification of Alzheimer’s Disease and Mild Cognitive Impairment using Deep Learning

Author(s):  
Sanjay Nagaraj ◽  
Tim Q Duong

ABSTRACTAlzheimer Disease (AD) is a progressive neurodegenerative disease that can significantly impair cognition and memory. AD is the leading cause of dementia and affects one in ten people age 65 and older. Current diagnoses methods of AD heavily rely on the use of Magnetic Resonance Imaging (MRI) since non-imaging methods can vary widely leading to inaccurate diagnoses. Furthermore, recent research has revealed a substage of AD, Mild Cognitive Impairment (MCI), that is characterized by symptoms between normal cognition and dementia which makes it more prone to misdiagnosis.A large battery of clinical variables are currently used to detect cognitive impairment and classify early mild cognitive impairment (EMCI), late mild cognitive impairment (LMCI), and AD from cognitive normal (CN) patients. The goal of this study was to derive a simplified risk-stratification algorithm for diagnosis and identify a few significant clinical variables that can accurately classify these four groups using an empirical deep learning approach. Over 100 variables that included neuropsychological/neurocognitive tests, demographics, genetic factors, and blood biomarkers were collected from EMCI, LMCI, AD, and CN patients from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database. Feature engineering was performed with 5 different methods and a neural network was trained on 90% of the data and tested on 10% using 10-fold cross validation. Prediction performance used area under the curve (AUC) of the receiver operating characteristic analysis.The five different feature selection methods consistently yielded the top classifiers to be the Clinical Dementia Rating Scale - Sum of Boxes (CDRSB), Delayed total recall (LDELTOTAL), Modified Preclinical Alzheimer Cognitive Composite with Trails test (mPACCtrailsB), the Modified Preclinical Alzheimer Cognitive Composite with Digit test (mPACCdigit), and Mini-Mental State Examination (MMSE). The best classification model yielded an AUC of 0.984, and the simplified risk-stratification score yielded an AUC of 0.963 on the test dataset.Our results show that this deep-learning algorithm and simplified risk score derived from our deep-learning algorithm accurately diagnose EMCI, LMCI, AD and CN patients using a few commonly available neurocognitive tests. The project was successful in creating an accurate, clinically translatable risk-stratified scoring aid for primary care providers to diagnose AD in a fast and inexpensive manner.

2021 ◽  
Vol 80 (3) ◽  
pp. 1079-1090
Author(s):  
Sanjay Nagaraj ◽  
Tim Q. Duong

Background: Many neurocognitive and neuropsychological tests are used to classify early mild cognitive impairment (EMCI), late mild cognitive impairment (LMCI), and Alzheimer’s disease (AD) from cognitive normal (CN). This can make it challenging for clinicians to make efficient and objective clinical diagnoses. It is possible to reduce the number of variables needed to make a reasonably accurate classification using machine learning. Objective: The goal of this study was to develop a deep learning algorithm to identify a few significant neurocognitive tests that can accurately classify these four groups. We also derived a simplified risk-stratification score model for diagnosis. Methods: Over 100 variables that included neuropsychological/neurocognitive tests, demographics, genetic factors, and blood biomarkers were collected from 383 EMCI, 644 LMCI, 394 AD patients, and 516 cognitive normal from the Alzheimer’s Disease Neuroimaging Initiative database. A neural network algorithm was trained on data split 90% for training and 10% testing using 10-fold cross-validation. Prediction performance used area under the curve (AUC) of the receiver operating characteristic analysis. We also evaluated five different feature selection methods. Results: The five feature selection methods consistently yielded the top classifiers to be the Clinical Dementia Rating Scale - Sum of Boxes, Delayed total recall, Modified Preclinical Alzheimer Cognitive Composite with Trails test, Modified Preclinical Alzheimer Cognitive Composite with Digit test, and Mini-Mental State Examination. The best classification model yielded an AUC of 0.984, and the simplified risk-stratification score yielded an AUC of 0.963 on the test dataset. Conclusion: The deep-learning algorithm and simplified risk score accurately classifies EMCI, LMCI, AD and CN patients using a few common neurocognitive tests.


2006 ◽  
Vol 14 (7S_Part_20) ◽  
pp. P1094-P1094
Author(s):  
Sultan Raja Chaudhury ◽  
Tulsi Patel ◽  
Abigail Fallows ◽  
Keeley J. Brookes ◽  
Tamar Guetta-Baranes ◽  
...  

2018 ◽  
Vol 24 (3) ◽  
pp. 421-430 ◽  
Author(s):  
Mark W. Logue ◽  
Matthew S. Panizzon ◽  
Jeremy A. Elman ◽  
Nathan A. Gillespie ◽  
Sean N. Hatton ◽  
...  

Neurology ◽  
2021 ◽  
pp. 10.1212/WNL.0000000000012698
Author(s):  
Ravnoor Singh Gill ◽  
Hyo-Min Lee ◽  
Benoit Caldairou ◽  
Seok-Jun Hong ◽  
Carmen Barba ◽  
...  

Objective.To test the hypothesis that a multicenter-validated computer deep learning algorithm detects MRI-negative focal cortical dysplasia (FCD).Methods.We used clinically-acquired 3D T1-weighted and 3D FLAIR MRI of 148 patients (median age, 23 years [range, 2-55]; 47% female) with histologically-verified FCD at nine centers to train a deep convolutional neural network (CNN) classifier. Images were initially deemed as MRI-negative in 51% of cases, in whom intracranial EEG determined the focus. For risk stratification, the CNN incorporated Bayesian uncertainty estimation as a measure of confidence. To evaluate performance, detection maps were compared to expert FCD manual labels. Sensitivity was tested in an independent cohort of 23 FCD cases (13±10 years). Applying the algorithm to 42 healthy and 89 temporal lobe epilepsy disease controls tested specificity.Results.Overall sensitivity was 93% (137/148 FCD detected) using a leave-one-site-out cross-validation, with an average of six false positives per patient. Sensitivity in MRI-negative FCD was 85%. In 73% of patients, the FCD was among the clusters with the highest confidence; in half it ranked the highest. Sensitivity in the independent cohort was 83% (19/23; average of five false positives per patient). Specificity was 89% in healthy and disease controls.Conclusions.This first multicenter-validated deep learning detection algorithm yields the highest sensitivity to date in MRI-negative FCD. By pairing predictions with risk stratification this classifier may assist clinicians to adjust hypotheses relative to other tests, increasing diagnostic confidence. Moreover, generalizability across age and MRI hardware makes this approach ideal for pre-surgical evaluation of MRI-negative epilepsy.Classification of evidence.This study provides Class III evidence that deep learning on multimodal MRI accurately identifies FCD in epilepsy patients initially diagnosed as MRI-negative.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Zhe Huang ◽  
Minglang Sun ◽  
Chengan Guo

Alzheimer’s disease (AD) is an irreversible neurodegenerative disease, and, at present, once it has been diagnosed, there is no effective curative treatment. Accurate and early diagnosis of Alzheimer’s disease is crucial for improving the condition of patients since effective preventive measures can be taken in advance to delay the onset time of the disease. 18F-Fluorodeoxyglucose positron emission tomography (18F-FDG PET : PET) is an effective biomarker of the symptom of AD and has been used as medical imaging data for diagnosing AD. Mild cognitive impairment (MCI) is regarded as an early symptom of AD, and it has been shown that MCI also has a certain biomedical correlation with PET. In this paper, we explore how to use 3D PET images to realize the effective recognition of MCI and thus achieve the early prediction of AD. This problem is then taken as the classification of three categories of PET images, including MCI, AD, and NC (normal controls). In order to get better classification performance, a novel network model is proposed in the paper based on 3D convolution neural networks (CNN) and support vector machines (SVM) by utilizing both the excellent abilities of CNN in feature extraction and SVM in classification. In order to make full use of the optimal property of SVM in solving binary classification problems, the three-category classification problem is divided into three binary classifications, and each binary classification is being realized with a CNN + SVM network. Then, the outputs of the three CNN + SVM networks are fused into a final three-category classification result. An end-to-end learning algorithm is developed to train the CNN + SVM networks, and a decision fusion algorithm is exploited to realize the fusion of the outputs of three CNN + SVM networks. Experimental results obtained in the work with comparative analyses confirm the effectiveness of the proposed method.


NeuroImage ◽  
2019 ◽  
Vol 189 ◽  
pp. 276-287 ◽  
Author(s):  
Simeon Spasov ◽  
Luca Passamonti ◽  
Andrea Duggento ◽  
Pietro Liò ◽  
Nicola Toschi

Sign in / Sign up

Export Citation Format

Share Document