scholarly journals Comparison of mechanical properties in interference screw fixation technique and organic anterior cruciate ligament reconstruction method: a biomechanical study

2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Amirhossein Borjali ◽  
Amir Nourani ◽  
Hadi Moeinnia ◽  
Mahdi Mohseni ◽  
Hossein Korani ◽  
...  

Abstract Background Bone and Site Hold Tendon Inside (BASHTI) technique is an organic implant-less technique for anterior cruciate ligament (ACL) reconstruction with some clinical advantages, such as speeding up the healing process, over implantable techniques. The study aims to compare the mechanical properties of BASHTI technique with the conventional interference screw technique. Methods To investigate the mechanical properties, 20 in-vitro experimental tests were conducted. Synthetic dummy bone, along with fresh digital bovine tendons, as a graft, were used for experiments. Three loading steps were applied to all specimens, including a preconditioning, a main cyclic, and a pull-out loading. Results The mechanical characters of an interference screw technique using an 8 mm tendon diameter, including fixation strength, average cyclic stiffness (ACS), and average pull-out stiffness (APS) were found to be 439 ± 132 N, 10.3 ± 5.3 kN/mm, and 109 ± 40 N/mm, respectively. In the case of an interference screw using a 9 mm tendon, the fixation strength, ACS, and APS were obtained 549 ± 87 N, 10.3 ± 4.7 kN/mm, and 91 ± 13 N/mm, respectively. In parallel, the fixation strength, APS, and ACS of BASHTI technique using an 8 mm tendon were 360 ± 123 N, 3.3 ± 0.6 kN/mm, and 79 ± 27 N/mm, respectively, while, for 9 mm tendon 278 ± 103 N, 2.4 ± 1.2 kN/mm, and 111 ± 40 N/mm, were reported for fixation strength, APS, and ACS respectively when BASHTI technique was used. Conclusion About 50% of interference screw samples showed superior mechanical properties compared to BASHTI technique, but in another half of the samples, the differences were not significant (N.S.). However, due to organic advantages of BASHTI technique and lower cost, it could be used as a substitute for interference screw technique, especially where fast recovery is expected.

2021 ◽  
Author(s):  
Mahdi Mohseni ◽  
Amir Nourani ◽  
Hossein Korani ◽  
Hadi Moeinnia ◽  
Amirhossein Borjali ◽  
...  

Background: Bone and site hold tendon inside (BASHTI) is an implant-less technique that can solve some of the problems associated with other anterior cruciate ligament (ACL) reconstructive methods. This study aims to investigate the effect of core bone diameter variation on the biomechanical properties of a reconstructed ACL using BASHTI technique. Methods: A number of 15 laboratory samples of reconstructed ACL were built using bovine digital tendons and Sawbones blocks. Samples were divided into three groups with different core bone diameters of 8 mm, 8.5 mm, and 9 mm. The double-stranded tendon size and bone tunnel diameter were 8 mm and 10 mm, respectively. A loading scenario consisting of two cyclic loadings followed by a single cycle pull-out loading was applied to the samples simulating the after-surgery loading conditions to observe the fixation strength. Results: Results showed that the core bone diameter had a significant effect on the failure mode of the samples (P = 0.006) and their fixation strength (P < 0.001). Also, it was observed that the engaging length and the average cyclic stiffness (ACS) of them were influenced by the core bone diameter significantly (engaging length: P = 0.001, ACS: P = 0.007), but its effect on the average pull-out stiffness was not significant (P = 0.053). Conclusions: It was concluded that core bone diameter variation has a significant impact on the mechanical properties of ACL reconstruction when BASHTI technique is used, and it should be noted for surgeons who use BASHTI technique.


2021 ◽  
Author(s):  
Yuanjun Teng ◽  
Lijun Da ◽  
Xiaohui Zhang ◽  
Hong Wang ◽  
Hua Han ◽  
...  

Abstract Background: Interference screw is commonly used for graft fixation in anterior cruciate ligament (ACL) reconstruction However, previous studies h a d reported that the insertion of interference screws significantly caused graft laceration . The purpose of this study was to determine whether sutures reduce d the graft laceration from the insertion of interference screws in ACL reconstruction. Methods: Porcine tibias and bovine extensor tendons were used for establishing a knee model of ACL reconstruction in vitro . The ends of grafts were sutured using three different sutures, including the bioabsorbable, Ethibond and ultra high molecular weight polyethylene (UHMWPE) sutures Poly ether ether ketone (PEEK) interference screw s w ere used fortibial fixation Biomechanical tests were performed to investigate the protective effects of different sutures on grafts Results : All prepared tendons and bone specimens showed similar characteristics (length, weight, and pre tension of the tendons, tibial bone mineral density) among all groups ( P 0.05). The biomechanical test s demonstrated that PEEK interference screw s significantly caused the graft laceration P 0.05). However, all sutures (the bioabsorbable, Ethibond and UHMWPE sutures) did not reduce the graft laceration in ACL reconstruction P 0.05). Conclusions : PEEK interference screw s significantly weakened the biomechanical properties of grafts during tibial fixation in ACL reconstruction. Absorbable Ethibond and UHMWPE sutures did not provide protective effects on grafts during ACL reconstruction.


2012 ◽  
Vol 6 (1) ◽  
pp. 525-530 ◽  
Author(s):  
Giacomo Rizzello ◽  
Umile Giuseppe Longo ◽  
Stefano Petrillo ◽  
Alfredo Lamberti ◽  
Wasim Sardar Khan ◽  
...  

The anterior cruciate ligament (ACL) is fundamental for the knee joint stability. ACL tears are frequent, especially during sport activities, occurring mainly in young and active patients. Nowadays, the gold standard for the management of ACL tears remains the surgical reconstruction with autografts or allografts. New strategies are being developed to resolve the problems of ligament grafting and promote a physiological healing process of ligamentous tissue without requiring surgical reconstruction. Moreover, these strategies can be applicable in association surgical reconstruction and may be useful to promote and accelerate the healing process. The use of growth factors and stem cells seems to offer a new and fascinating solution for the management of ACL tears. The injection of stem cell and/or growth factors in the site of ligamentous injury can potentially enhance the repair process of the physiological tissue. These procedures are still at their infancy, and more in vivo and in vitro studies are required to clarify the molecular pathways and effectiveness of growth factors and stem cells therapy for the management of ACL tears. This review aims to summarize the current knowledge in the field of growth factors and stem cells for the management of ACL tears.


2009 ◽  
Vol 25 (4) ◽  
pp. 313-321 ◽  
Author(s):  
Oscar Martel ◽  
Juan F. Cárdenes ◽  
Gerardo Garcés ◽  
José A. Carta

Anterior cruciate ligament (ACL) reconstruction is one of the most important aspects of knee surgery. For this purpose, several fixation devices have been developed, although the interference screw is the most frequently used. The most typical biomechanical test of these devices consists of placing them in a testing machine and subjecting them to a pull-out test. However, insufficient attention has been paid to the influence of the displacement test rate on the mechanical properties of the fixation system. The aim of this study is to compare the influence of the crosshead rate in the biomechanical test of two different devices for the fixation of ACL tendon grafts. One hundred in vitro tests were performed using porcine tibiae and bovine tendons. The fixation devices used were (1) an interference screw and (2) a new expansion device. All ACL reconstructions were subjected to pull-out test to failure. Five crosshead rates were employed in a range from 30 mm/min to 4000 mm/min. Statistical analyses of the results show that, for the two devices, the rate has a significant effect on both maximum force and stiffness. Moreover, the new expansion device showed lesser dependency on the crosshead rate than the interference screw.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Chao-Hua Fang ◽  
Ming Li ◽  
Yun-Feng Zhang ◽  
Hua Liu

Abstract Background The interference screw is the most popular device that fixes the graft for anterior cruciate ligament reconstruction, reducing the incidence of windshield effect and bungee effect. For the screw, either metallic, “bioresorbable,” or polyetheretherketone (PEEK) material is available. PEEK is popular and extensively used due to its stability, biocompatibility, radiolucency, and elastic modulus. Rare relevant complications were reported, but here, we report two cases of extra-articular migrations of PEEK interference screw from the tibial tunnel after anterior cruciate reconstruction. Case report An 18-year-old boy and a 56-year-old woman underwent anterior cruciate ligament reconstruction using a PEEK interference screw to fix the graft in the tibial tunnel. They suffered from screw extrusion from the tibial tunnel after 40 days and six months, respectively, with an incision rupture or palpable subcutaneous mass. They underwent a second operation and recovered well. Conclusions The exact incidence of extra-articular migrations of PEEK interference screws is unknown, but it seems to be quite low; despite this and its uncertain cause, the negative effects caused by the PEEK material need to be considered.


Author(s):  
Zhuo Yan ◽  
Wenbo Chen ◽  
Wenhe Jin ◽  
Yaying Sun ◽  
Kai Gu ◽  
...  

Upgradation is still in need for the clinical-applied interference screws in anterior cruciate ligament reconstruction for more reliable fixation. Silk fibroin bulk materials offer a promising opportunity for this application...


Sign in / Sign up

Export Citation Format

Share Document