scholarly journals Biomechanical feasibility of semi-rigid stabilization and semi-rigid lumbar interbody fusion: a finite element study

2022 ◽  
Vol 23 (1) ◽  
Author(s):  
Chia-En Wong ◽  
Hsuan-Teh Hu ◽  
Li-Hsing Kao ◽  
Che-Jung Liu ◽  
Ke-Chuan Chen ◽  
...  

Abstract Background Semi-rigid lumbar fusion offers a compromise between pedicle screw-based rigid fixation and non-instrumented lumbar fusion. However, the use of semi-rigid interspinous stabilization (SIS) with interspinous spacer and ligamentoplasty and semi-rigid posterior instrumentation (SPI) to assist interbody cage as fusion constructs remained controversial. The purpose of this study is to investigate the biomechanical properties of semi-rigidly stabilized lumbar fusion using SIS or SPI and their effect on adjacent levels using finite element (FE) method. Method Eight FE models were constructed to simulate the lumbosacral spine. In the non-fusion constructs, semi-rigid stabilization with (i) semi-rigid interspinous spacer and artificial ligaments (PD-SIS), and (ii) PI with semi-rigid rods were simulated (PD + SPI). For fusion constructs, the spinal models were implanted with (iii) PEEK cage only (Cage), (iv) PEEK cage and SIS (Cage+SIS), (v) PEEK cage and SPI (Cage+SPI), (vi) PEEK cage and rigid PI (Cage+PI). Result The comparison of flexion-extension range of motion (ROM) in the operated level showed the difference between Cage+SIS, Cage+SPI, and Cage+PI was less than 0.05 degree. In axial rotation, ROM of Cage+SIS were greater than Cage+PI by 0.81 degree. In the infrajacent level, while Cage+PI increased the ROM by 24.1, 27,7, 25.9, and 10.3% and Cage+SPI increased the ROM by 26.1, 30.0, 27.1, and 10.8% in flexion, extension, lateral bending and axial rotation respectively, Cage+SIS only increased the ROM by 3.6, 2.8, and 11.2% in flexion, extension, and lateral bending and reduced the ROM by 1.5% in axial rotation. The comparison of the von Mises stress showed that SIS reduced the adjacent IVD stress by 9.0%. The simulation of the strain energy showed a difference between constructs less than 7.9%, but all constructs increased the strain energy in the infradjacent level. Conclusion FE simulation showed semi-rigid fusion constructs including Cage+SIS and Cage+SPI can provide sufficient stabilization and flexion-extension ROM reduction at the fusion level. In addition, SIS-assisted fusion resulted in less hypermobility and less von Mises stress in the adjacent levels. However, SIS-assisted fusion had a disadvantage of less ROM reduction in lateral bending and axial rotation. Further clinical studies are warranted to investigate the clinical efficacy and safety of semi-rigid fusions.

2020 ◽  
Vol 43 (12) ◽  
pp. 803-810 ◽  
Author(s):  
Masud Rana ◽  
Sandipan Roy ◽  
Palash Biswas ◽  
Shishir Kumar Biswas ◽  
Jayanta Kumar Biswas

The aim of this study is to design a novel expanding flexible rod device, for pedicle screw fixation to provide dynamic stability, based on strength and flexibility. Three-dimensional finite-element models of lumbar spine (L1-S) with flexible rod device on L3-L4-L5 levels are developed. The implant material is taken to be Ti-6Al-4V. The models are simulated under different boundary conditions, and the results are compared with intact model. In natural model, total range of motion under 10 Nm moment were found 66.7°, 24.3° and 13.59°, respectively during flexion–extension, lateral bending and axial rotation. The von Mises stress at intact bone was 4 ± 2 MPa and at bone, adjacent to the screw in the implanted bone, was 6 ± 3 MPa. The von Mises stress of disc of intact bone varied from 0.36 to 2.13 MPa while that of the disc between the fixed vertebra of the fixation model reduced by approximately 10% for flexion and 25% for extension compared to intact model. The von Mises stresses of pedicle screw were 120, 135, 110 and 90 MPa during flexion, extension, lateral bending, and axial rotation, respectively. All the stress values were within the safe limit of the material. Using the flexible rod device, flexibility was significantly increased in flexion/extension but not in axial rotation and lateral bending. The results suggest that dynamic stabilization system with respect to fusion is more effective for homogenizing the range of motion of the spine.


Author(s):  
Ming Xu ◽  
Thomas Scholl ◽  
Pedro Berjano ◽  
Jazmin Cruz ◽  
James Yang

Rod fracture and nonunion are common complications associated with pedicle subtraction osteotomies (PSO). Supplementary rods and interbody cage (IB) are added to reduce the primary rod stress. As supplementary rods, delta rods and cross rods have been proposed to reduce more stress on the primary rods compared to conventional supplementary rods (accessary rods) in PSO. The objective of this study is to investigate the effects of cross rods and delta rods on reducing primary rod stress in PSO subject. A validated 3D finite element model of a T12-S1 spine segment with 25° PSO at L3 and bilateral rods fixation from T12-S1 was used to compare different rod configurations: 1) PSO and two primary rods (PSO+2P); 2) PSO with an IB at L2-L3 (PSO+2P+IB); 3) PSO with accessory rods and an IB at L2-L3 (PSO+2P+IB+2A); 4) PSO with delta rods and an IB at L2-L3 (PSO+2P+IB+2D); 5) PSO with single cross rod and an IB at L2-L3 (PSO+2P+IB+1C); 6) PSO with double cross rods and an IB at L2-L3 (PSO+2P+IB+2C). The spine model was loaded with a follower load of 400 N combined with pure moments of 7.5 Nm in flexion, extension, right lateral bending, and right axial rotation. Von Mises stress of the primary rods were predicted for all test conditions. The PSO without IB condition had the largest primary rod stress in flexion. With IB at L2-L3, the rod stress in flexion reduced by 15%. Adding 2 conventional supplementary rods reduced the rod stress in flexion by 29%, which was achieved by adding single cross rod. The maximum von Mises stress occurred in the middle of the primary rods without supplementary rods whereas the maximum stress concentrated adjacent to the contact region between the connectors and the primary rods. Delta rods and double cross rods reduced the most rod stress in flexion, which were by 33% and 32% respectively. Under lateral bending, 2 delta rods reduced the most primary rod stress (−33%). Under axial rotation, the single cross rod reduced the most primary rod stress (−48%). Interbody cages and supplementary rods reduced the primary rod stress in a comparable way. Primary rod stress with 2 delta rods and double cross rods were comparable, which were marginally lower than those with conventional supplementary rods. Adding single cross rod was comparable to adding 2 conventional accessory rods in rod stress reduction in flexion. Under lateral bending, delta rods reduced most rod stress whereas under axial rotation, cross rods reduced most rod stress. This study suggested that both delta rods and cross rods reduce more primary rod stress than conventional accessory rods do.


2021 ◽  
Vol 11 (13) ◽  
pp. 5764
Author(s):  
Jen-Chung Liao ◽  
Michael Jian-Wen Chen ◽  
Tung-Yi Lin ◽  
Weng-Pin Chen

Vertebroplasty (VP), balloon kyphoplasty (BKP), and vertebral stent (VS) are usually used for treating osteoporotic compression fractures. However, these procedures may pose risks of secondary adjacent level fractures. This study simulates finite element models of osteoporotic compression fractures treated with VP, BKP, and VS Vertebral resection method was used to simulate vertebra fracture with Young’s modulus set at 70 MPa to replicate osteoporosis. A follower load of (1175 N for flexion, and 500 N for all others) was applied in between vertebral bodies to simulate the muscle force. Moment loadings of 7.5 N-m in flexion, extension, lateral bending, axial rotation were applied respectively. The VS model had the highest von Mises stresses on the bone cement under all different loading conditions (flexion/5.91 MPa; extension/3.74 MPa; lateral bending/3.12 MPa; axial rotation/3.54 MPa). The stress distribution and maximum von Mises stresses of the adjacent segments, T11 inferior endplate and L1 superior endplate, showed no significant difference among three surgical models. The postoperative T12 stiffness for VP, BKP, and VS are 2898.48 N/mm, 4123.18 N/mm, and 4690.34 N/mm, respectively. The VS model led to superior surgical vertebra stiffness without significantly increasing the risks of adjacent fracture.


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Jia Li ◽  
Li-Cheng Zhang ◽  
Jiantao Li ◽  
Hao Zhang ◽  
Jing-Xin Zhao ◽  
...  

Purpose. A hybrid pedicle screw system for minimally invasive spinal fixation was developed based on the uniplanar pedicle screw construct and a new intermediate screw. Its biomechanical performance was evaluated using finite element (FE) analysis. Methods. A T12-L2 FE model was established to simulate the L1 vertebral compression fracture with Magerl classification A1.2. Six fixation models were developed to simulate the posterior pedicle screw fracture fixation, which were divided into two subgroups with different construct configurations: (1) six-monoaxial/uniplanar/polyaxial pedicle screw constructs and (2) four-monoaxial/uniplanar/polyaxial pedicle screw constructs with the new intermediate screw. After model validation, flexion, extension, lateral bending, and axial rotation with 7.5 Nm moments and preloading of 500 N vertical compression were applied to the FE models to compare the biomechanical performances of the six fixation models with maximum von Mises stress, range of motion, and maximum displacement of the vertebra. Results. Under four loading scenarios, the maximum von Mises stresses were found to be at the roots of the upper or lower pedicle screws. In the cases of flexion, lateral bending, and axial rotation, the maximum von Mises stress of the uniplanar screw construct lay in between the monoaxial and polyaxial screw constructs in each subgroup. Considering lateral bending, the uniplanar screw construct enabled to lower the maximum von Mises stress than monoaxial and polyaxial pedicle screw constructs in each subgroup. Two subgroups showed comparable results of the maximum von Mises stress on the endplates, range of motion of T12-L1, and maximum displacement of T12 between the corresponding constructs with the new intermediate screw or not. Conclusions. The observations shown in this study verified that the hybrid uniplanar pedicle screw system exhibited comparable biomechanical performance as compared with other posterior short-segment constructs. The potential advantage of this new fixation system may provide researchers and clinical practitioners an alternative for minimally invasive spinal fixation with vertebral augmentation.


Author(s):  
Héctor E Jaramillo S

The annulus fibrosus has substantial variations in its geometrical properties (among individuals and between levels), and plays an important role in the biomechanics of the spine. Few works have studied the influence of the geometrical properties including annulus area, anterior / posterior disc height, and over the range of motion, but in general these properties have not been reported in the finite element models. This paper presents a probabilistic finite element analyses (Abaqus 6.14.2) intended to assess the effects of the average disc height ( hp) and the area ( A) of the annulus fibrosus on the biomechanics of the lumbar spine. The annulus model was loaded under flexion, extension, lateral bending, and axial rotation and analyzed for different combinations of hpand A in order to obtain their effects over the range of motion. A set of 50 combinations of hp(mean = 18.1 mm, SD = 3.5 mm) and A (mean = 49.8%, SD = 4.6%) were determined randomly according to a normal distribution. A Yeoh energy function was used for the matrix and an exponential function for the fibers. The range of motion was more sensitive to hpthan to A. With regard to the range of motion the segment was more sensitive in the following order: flexion, axial rotation, extension, and lateral bending. An increase of the hpproduces an increase of the range of motion, but this decreases when A increases. Comparing the range of motion with the experimental data, on average, 56.0% and 73.0% of the total of data were within the experimental range for the L4–L5 and L5–S1 segments, respectively. Further, an analytic equation was derived to obtain the range of motion as a function of the hpand A. This equation can be used to calibrate a finite element model of the spine segment, and also to understand the influence of each geometrical parameter on the range of motion.


2012 ◽  
Vol 17 (3) ◽  
pp. 232-242 ◽  
Author(s):  
Prasath Mageswaran ◽  
Fernando Techy ◽  
Robb W. Colbrunn ◽  
Tara F. Bonner ◽  
Robert F. McLain

Object The object of this study was to evaluate the effect of hybrid dynamic stabilization on adjacent levels of the lumbar spine. Methods Seven human spine specimens from T-12 to the sacrum were used. The following conditions were implemented: 1) intact spine; 2) fusion of L4–5 with bilateral pedicle screws and titanium rods; and 3) supplementation of the L4–5 fusion with pedicle screw dynamic stabilization constructs at L3–4, with the purpose of protecting the L3–4 level from excessive range of motion (ROM) and to create a smoother motion transition to the rest of the lumbar spine. An industrial robot was used to apply continuous pure moment (± 2 Nm) in flexion-extension with and without a follower load, lateral bending, and axial rotation. Intersegmental rotations of the fused, dynamically stabilized, and adjacent levels were measured and compared. Results In flexion-extension only, the rigid instrumentation at L4–5 caused a 78% decrease in the segment's ROM when compared with the intact specimen. To compensate, it caused an increase in motion at adjacent levels L1–2 (45.6%) and L2–3 (23.2%) only. The placement of the dynamic construct at L3–4 decreased the operated level's ROM by 80.4% (similar stability as the fusion at L4–5), when compared with the intact specimen, and caused a significant increase in motion at all tested adjacent levels. In flexion-extension with a follower load, instrumentation at L4–5 affected only a subadjacent level, L5–sacrum (52.0%), while causing a reduction in motion at the operated level (L4–5, −76.4%). The dynamic construct caused a significant increase in motion at the adjacent levels T12–L1 (44.9%), L1–2 (57.3%), and L5–sacrum (83.9%), while motion at the operated level (L3–4) was reduced by 76.7%. In lateral bending, instrumentation at L4–5 increased motion at only T12–L1 (22.8%). The dynamic construct at L3–4 caused an increase in motion at T12–L1 (69.9%), L1–2 (59.4%), L2–3 (44.7%), and L5–sacrum (43.7%). In axial rotation, only the placement of the dynamic construct at L3–4 caused a significant increase in motion of the adjacent levels L2–3 (25.1%) and L5–sacrum (31.4%). Conclusions The dynamic stabilization system displayed stability characteristics similar to a solid, all-metal construct. Its addition of the supraadjacent level (L3–4) to the fusion (L4–5) did protect the adjacent level from excessive motion. However, it essentially transformed a 1-level lumbar fusion into a 2-level lumbar fusion, with exponential transfer of motion to the fewer remaining discs.


2009 ◽  
Vol 3 (2) ◽  
Author(s):  
J. Bryndza ◽  
A. Weiser ◽  
M. Paliwal

Arthritis, degenerative disc disease, spinal stenosis, and other ailments lead to the deterioration of the facet joints of the spine, causing pain and immobility in patients. Dynamic stabilization and arthroplasty of the facet joints have advantages over traditional fusion methods by eliminating pain while maintaining normal mobility and function. In the present work, a novel dynamic stabilization spine implant design was developed using computational analysis, and the final design was fabricated and mechanically tested. A model of a fused L4–L5 Functional Spinal Unit (FSU) was developed using Pro/Engineer (PTC Corporation, Needham, MA). The model was imported into commercial finite element analysis software Ansys (Ansys Inc., Canonsburg, PA), and meshed with the material properties of bone, intervertebral disc, and titanium alloy. Physiological loads (600N axial load, 10 N-m moment) were applied to the model construct following the protocol developed by others. The model was subjected to flexion/extension, axial rotation, and lateral bending, and was validated with the results reported by Kim et al. The validated FSU was used as a base to design and evaluate novel spine implant designs, using finite element anlysis. A comparison of the flexion-extension curve of six designs and an intact spine was carried out. Range of motion of the new designs showed up to 4 degrees in flexion and extension, compared to less than one degree flexion/extension in a fused spine. The design that reproduced normal range of motion best was optimized, fabricated and prepared for mechanical testing. The finalized dynamic stabilization design with spring insert was implanted into a L4-L5 FSU sawbone (Pacific Research Laboratories, Vashon, WA) using Stryker Xia pedicle screws. The construct was potted using PMMA, and was subjected to flexion/extension, axial rotation, and lateral bending loads using MTS mechanical testing machine. The stiffness of the design was assessed and compared with computational analysis results.


2016 ◽  
Vol 17 (4) ◽  
pp. 497-503 ◽  
Author(s):  
Rinchen Phuntsok ◽  
Marcus D. Mazur ◽  
Benjamin J. Ellis ◽  
Vijay M. Ravindra ◽  
Douglas L. Brockmeyer

OBJECT There is a significant deficiency in understanding the biomechanics of the pediatric craniocervical junction (CCJ) (occiput–C2), primarily because of a lack of human pediatric cadaveric tissue and the relatively small number of treated patients. To overcome this deficiency, a finite element model (FEM) of the pediatric CCJ was created using pediatric geometry and parameterized adult material properties. The model was evaluated under the physiological range of motion (ROM) for flexion-extension, axial rotation, and lateral bending and under tensile loading. METHODS This research utilizes the FEM method, which is a numerical solution technique for discretizing and analyzing systems. The FEM method has been widely used in the field of biomechanics. A CT scan of a 13-month-old female patient was used to create the 3D geometry and surfaces of the FEM model, and an open-source FEM software suite was used to apply the material properties and boundary and loading conditions and analyze the model. The published adult ligament properties were reduced to 50%, 25%, and 10% of the original stiffness in various iterations of the model, and the resulting ROMs for flexion-extension, axial rotation, and lateral bending were compared. The flexion-extension ROMs and tensile stiffness that were predicted by the model were evaluated using previously published experimental measurements from pediatric cadaveric tissues. RESULTS The model predicted a ROM within 1 standard deviation of the published pediatric ROM data for flexion-extension at 10% of adult ligament stiffness. The model's response in terms of axial tension also coincided well with published experimental tension characterization data. The model behaved relatively stiffer in extension than in flexion. The axial rotation and lateral bending results showed symmetric ROM, but there are currently no published pediatric experimental data available for comparison. The model predicts a relatively stiffer ROM in both axial rotation and lateral bending in comparison with flexion-extension. As expected, the flexion-extension, axial rotation, and lateral bending ROMs increased with the decrease in ligament stiffness. CONCLUSIONS An FEM of the pediatric CCJ was created that accurately predicts flexion-extension ROM and axial force displacement of occiput–C2 when the ligament material properties are reduced to 10% of the published adult ligament properties. This model gives a reasonable prediction of pediatric cervical spine ligament stiffness, the relationship between flexion-extension ROM, and ligament stiffness at the CCJ. The creation of this model using open-source software means that other researchers will be able to use the model as a starting point for research.


2020 ◽  
Author(s):  
Xiao-Hua Zuo ◽  
Ying-Bing Chen ◽  
Peng Xie ◽  
Wen-Dong Zhang ◽  
Xiang-Yun Xue ◽  
...  

Abstract Purpose Biomechanical comparison of wedge and biconcave deformity of different height restoration after augmentation of osteoporotic vertebral compression fractures was analyzed by three-dimensional finite element analysis (FEA). Methods Three-dimensional finite element model (FEM) of T11-L2 segment was constructed from CT scan of elderly osteoporosis patient. The von Mises stresses of vertebrae, intervertebral disc, facet joints, displacement, and range of motion (ROM) of wedge and biconcave deformity were compared at four different heights (Genant 0–3 grade) after T12 vertebral augmentation. Results In wedge deformity, the stress of T12 decreased as the vertebral height in neutral position, flexion, extension and left axial rotation, whereas increased sharply in bending at Genant 0; L1 and L2 decreased in all positions excluding flexion of L2, and T11 increased in neutral position, flexion, extension, and right axial rotation at Genant 0. No significant changes in biconcave deformity. The stress of T11-T12, T12-L1, and L1-L2 intervertebral disc gradually increased or decreased under other positions in wedge fracture, whereas L1-L2 no significant change in biconcave fracture. The utmost overall facet joint stress is at Genant 3, whereas there is no significant change under the same position in biconcave fracture. The displacement and ROM of the wedge fracture had ups and downs, while a decline in all positions excluding extension in biconcave fracture. Conclusions The vertebral restoration height after augmentation to Genant 0 affects the von Mises stress, displacement, and ROM in wedge deformity, which may increase the risk of fracture; Whereas restored or not in biconcave deformity.


2021 ◽  
Author(s):  
Jen-Chung Liao ◽  
Michael Jian-Wen Chen ◽  
Tung-Yi Lin ◽  
Weng-Pin Chen

Abstract Vertebroplasty (VP), balloon kyphoplasty (BKP), and vertebral stent (VS) are usually used for osteoporotic compression fracture. However, these procedures may pose risks of secondary adjacent level fractures. This study simulates finite element models of osteoporotic compression fractures treated with VP, BKP, and VS. Vertebral resection method was used to simulate vertebra fracture with Young’s modulus set at 70 MPa to replicate osteoporosis. A compressive force of 1000N was applied on the T11 vertebra while the L1 vertebra were fully constrained as boundary condition. Moment loadings of 4.2 N-m in flexion, 1.0 N-m in extension, 2.6 N-m in lateral bending, and 3.4 N-m in axial rotation were applied. The VS model had the highest von Mises stresses on the bone cement under all different loading conditions (flexion/5.91 Mpa; extension/3.74 Mpa; lateral bending/3.12 Mpa; axial rotation/3.54 Mpa). The stress distribution and maximum von Mises stresses of the adjacent segments, T11 inferior endplate and L1 superior endplate, showed no significant difference among three surgical models. The postoperative T12 stiffness for VP, BKP, and VS are 2898.48 N/mm, 4123.18 N/mm, and 4690.34 N/mm, respectively. VS is the most effective surgical method to maintain vertebral body height without significantly increasing the risks of adjacent fracture.


Sign in / Sign up

Export Citation Format

Share Document