scholarly journals Development and initial evaluation of a finite element model of the pediatric craniocervical junction

2016 ◽  
Vol 17 (4) ◽  
pp. 497-503 ◽  
Author(s):  
Rinchen Phuntsok ◽  
Marcus D. Mazur ◽  
Benjamin J. Ellis ◽  
Vijay M. Ravindra ◽  
Douglas L. Brockmeyer

OBJECT There is a significant deficiency in understanding the biomechanics of the pediatric craniocervical junction (CCJ) (occiput–C2), primarily because of a lack of human pediatric cadaveric tissue and the relatively small number of treated patients. To overcome this deficiency, a finite element model (FEM) of the pediatric CCJ was created using pediatric geometry and parameterized adult material properties. The model was evaluated under the physiological range of motion (ROM) for flexion-extension, axial rotation, and lateral bending and under tensile loading. METHODS This research utilizes the FEM method, which is a numerical solution technique for discretizing and analyzing systems. The FEM method has been widely used in the field of biomechanics. A CT scan of a 13-month-old female patient was used to create the 3D geometry and surfaces of the FEM model, and an open-source FEM software suite was used to apply the material properties and boundary and loading conditions and analyze the model. The published adult ligament properties were reduced to 50%, 25%, and 10% of the original stiffness in various iterations of the model, and the resulting ROMs for flexion-extension, axial rotation, and lateral bending were compared. The flexion-extension ROMs and tensile stiffness that were predicted by the model were evaluated using previously published experimental measurements from pediatric cadaveric tissues. RESULTS The model predicted a ROM within 1 standard deviation of the published pediatric ROM data for flexion-extension at 10% of adult ligament stiffness. The model's response in terms of axial tension also coincided well with published experimental tension characterization data. The model behaved relatively stiffer in extension than in flexion. The axial rotation and lateral bending results showed symmetric ROM, but there are currently no published pediatric experimental data available for comparison. The model predicts a relatively stiffer ROM in both axial rotation and lateral bending in comparison with flexion-extension. As expected, the flexion-extension, axial rotation, and lateral bending ROMs increased with the decrease in ligament stiffness. CONCLUSIONS An FEM of the pediatric CCJ was created that accurately predicts flexion-extension ROM and axial force displacement of occiput–C2 when the ligament material properties are reduced to 10% of the published adult ligament properties. This model gives a reasonable prediction of pediatric cervical spine ligament stiffness, the relationship between flexion-extension ROM, and ligament stiffness at the CCJ. The creation of this model using open-source software means that other researchers will be able to use the model as a starting point for research.

PLoS ONE ◽  
2020 ◽  
Vol 15 (12) ◽  
pp. e0243771
Author(s):  
In-Suk Bae ◽  
Koang-Hum Bak ◽  
Hyoung-Joon Chun ◽  
Je Il Ryu ◽  
Sung-Jae Park ◽  
...  

Purpose This study aimed to investigate the biomechanical effects of a newly developed interspinous process device (IPD), called TAU. This device was compared with another IPD (SPIRE) and the pedicle screw fixation (PSF) technique at the surgical and adjacent levels of the lumbar spine. Materials and methods A three-dimensional finite element model analysis of the L1-S1 segments was performed to assess the biomechanical effects of the proposed IPD combined with an interbody cage. Three surgical models—two IPD models (TAU and SPIRE) and one PSF model—were developed. The biomechanical effects, such as range of motion (ROM), intradiscal pressure (IDP), disc stress, and facet loads during extension were analyzed at surgical (L3-L4) and adjacent levels (L2-L3 and L4-L5). The study analyzed biomechanical parameters assuming that the implants were perfectly fused with the lumbar spine. Results The TAU model resulted in a 45%, 49%, 65%, and 51% decrease in the ROM at the surgical level in flexion, extension, lateral bending, and axial rotation, respectively, when compared to the intact model. Compared to the SPIRE model, TAU demonstrated advantages in stabilizing the surgical level, in all directions. In addition, the TAU model increased IDP at the L2-L3 and L4-L5 levels by 118.0% and 78.5% in flexion, 92.6% and 65.5% in extension, 84.4% and 82.3% in lateral bending, and 125.8% and 218.8% in axial rotation, respectively. Further, the TAU model exhibited less compensation at adjacent levels than the PSF model in terms of ROM, IDP, disc stress, and facet loads, which may lower the incidence of the adjacent segment disease (ASD). Conclusion The TAU model demonstrated more stabilization at the surgical level than SPIRE but less stabilization than the PSF model. Further, the TAU model demonstrated less compensation at adjacent levels than the PSF model, which may lower the incidence of ASD in the long term. The TAU device can be used as an alternative system for treating degenerative lumbar disease while maintaining the physiological properties of the lumbar spine and minimizing the degeneration of adjacent segments.


Author(s):  
Sean M. Finley ◽  
J. Harley Astin ◽  
Evan Joyce ◽  
Andrew T. Dailey ◽  
Douglas L. Brockmeyer ◽  
...  

OBJECTIVE The underlying biomechanical differences between the pediatric and adult cervical spine are incompletely understood. Computational spine modeling can address that knowledge gap. Using a computational method known as finite element modeling, the authors describe the creation and evaluation of a complete pediatric cervical spine model. METHODS Using a thin-slice CT scan of the cervical spine from a 5-year-old boy, a 3D model was created for finite element analysis. The material properties and boundary and loading conditions were created and model analysis performed using open-source software. Because the precise material properties of the pediatric cervical spine are not known, a published parametric approach of scaling adult properties by 50%, 25%, and 10% was used. Each scaled finite element model (FEM) underwent two types of simulations for pediatric cadaver testing (axial tension and cardinal ranges of motion [ROMs]) to assess axial stiffness, ROM, and facet joint force (FJF). The authors evaluated the axial stiffness and flexion-extension ROM predicted by the model using previously published experimental measurements obtained from pediatric cadaveric tissues. RESULTS In the axial tension simulation, the model with 50% adult ligamentous and annulus material properties predicted an axial stiffness of 49 N/mm, which corresponded with previously published data from similarly aged cadavers (46.1 ± 9.6 N/mm). In the flexion-extension simulation, the same 50% model predicted an ROM that was within the range of the similarly aged cohort of cadavers. The subaxial FJFs predicted by the model in extension, lateral bending, and axial rotation were in the range of 1–4 N and, as expected, tended to increase as the ligament and disc material properties decreased. CONCLUSIONS A pediatric cervical spine FEM was created that accurately predicts axial tension and flexion-extension ROM when ligamentous and annulus material properties are reduced to 50% of published adult properties. This model shows promise for use in surgical simulation procedures and as a normal comparison for disease-specific FEMs.


Author(s):  
Héctor E Jaramillo S

The annulus fibrosus has substantial variations in its geometrical properties (among individuals and between levels), and plays an important role in the biomechanics of the spine. Few works have studied the influence of the geometrical properties including annulus area, anterior / posterior disc height, and over the range of motion, but in general these properties have not been reported in the finite element models. This paper presents a probabilistic finite element analyses (Abaqus 6.14.2) intended to assess the effects of the average disc height ( hp) and the area ( A) of the annulus fibrosus on the biomechanics of the lumbar spine. The annulus model was loaded under flexion, extension, lateral bending, and axial rotation and analyzed for different combinations of hpand A in order to obtain their effects over the range of motion. A set of 50 combinations of hp(mean = 18.1 mm, SD = 3.5 mm) and A (mean = 49.8%, SD = 4.6%) were determined randomly according to a normal distribution. A Yeoh energy function was used for the matrix and an exponential function for the fibers. The range of motion was more sensitive to hpthan to A. With regard to the range of motion the segment was more sensitive in the following order: flexion, axial rotation, extension, and lateral bending. An increase of the hpproduces an increase of the range of motion, but this decreases when A increases. Comparing the range of motion with the experimental data, on average, 56.0% and 73.0% of the total of data were within the experimental range for the L4–L5 and L5–S1 segments, respectively. Further, an analytic equation was derived to obtain the range of motion as a function of the hpand A. This equation can be used to calibrate a finite element model of the spine segment, and also to understand the influence of each geometrical parameter on the range of motion.


2019 ◽  
Vol 31 (4) ◽  
pp. 501-507 ◽  
Author(s):  
Rinchen Phuntsok ◽  
Chase W. Provost ◽  
Andrew T. Dailey ◽  
Douglas L. Brockmeyer ◽  
Benjamin J. Ellis

OBJECTIVEPrior studies have provided conflicting evidence regarding the contribution of key ligamentous structures to atlantoaxial (AA) joint stability. Many of these studies employed cadaveric techniques that are hampered by the inherent difficulties of testing isolated-injury scenarios. Analysis with validated finite element (FE) models can overcome some of these limitations. In a previous study, the authors completed an FE analysis of 5 subject-specific craniocervical junction (CCJ) models to investigate the biomechanics of the occipitoatlantal joint and identify the ligamentous structures essential for its stability. Here, the authors use these same CCJ FE models to investigate the biomechanics of the AA joint and to identify the ligamentous structures essential for its stability.METHODSFive validated CCJ FE models were used to simulate isolated- and combined ligamentous–injury scenarios of the transverse ligament (TL), tectorial membrane (TM), alar ligament (AL), occipitoatlantal capsular ligament, and AA capsular ligament (AACL). All models were tested with rotational moments (flexion-extension, axial rotation, and lateral bending) and anterior translational loads (C2 constrained with anterior load applied to the occiput) to simulate physiological loading and to assess changes in the atlantodental interval (ADI), a key radiographic indicator of instability.RESULTSIsolated AACL injury significantly increased range of motion (ROM) under rotational moment at the AA joint for flexion, lateral bending, and axial rotation, which increased by means of 28.0% ± 10.2%, 43.2% ± 15.4%, and 159.1% ± 35.1%, respectively (p ≤ 0.05 for all). TL removal simulated under translational loads resulted in a significant increase in displacement at the AA joint by 89.3% ± 36.6% (p < 0.001), increasing the ADI from 2.7 mm to 4.5 mm. An AACL injury combined with an injury to any other ligament resulted in significant increases in ROM at the AA joint, except when combined with injuries to both the TM and the ALs. Similarly, injury to the TL combined with injury to any other CCJ ligament resulted in a significant increase in displacement at the AA joint (significantly increasing ADI) under translational loads.CONCLUSIONSUsing FE modeling techniques, the authors showed a significant reliance of isolated- and combined ligamentous–injury scenarios on the AACLs and TL to restrain motion at the AA joint. Isolated injuries to other structures alone, including the AL and TM, did not result in significant increases in either AA joint ROM or anterior displacement.


Author(s):  
Matteo Panico ◽  
Tito Bassani ◽  
Tomaso Maria Tobia Villa ◽  
Fabio Galbusera

Simplified loading conditions such as pure moments are frequently used to compare different instrumentation techniques to treat spine disorders. The purpose of this study was to determine if the use of realistic loading conditions such as muscle forces can alter the stresses in the implants with respect to pure moment loading. A musculoskeletal model and a finite element model sharing the same anatomy were built and validated against in vitro data, and coupled in order to drive the finite element model with muscle forces calculated by the musculoskeletal one for a prescribed motion. Intact conditions as well as a L1-L5 posterior fixation with pedicle screws and rods were simulated in flexion-extension and lateral bending. The hardware stresses calculated with the finite element model with instrumentation under simplified and realistic loading conditions were compared. The ROM under simplified loading conditions showed good agreement with in vitro data. As expected, the ROMs between the two types of loading conditions showed relatively small differences. Realistic loading conditions increased the stresses in the pedicle screws and in the posterior rods with respect to simplified loading conditions; an increase of hardware stresses up to 40 MPa in extension for the posterior rods and 57 MPa in flexion for the pedicle screws were observed with respect to simplified loading conditions. This conclusion can be critical for the literature since it means that previous models which used pure moments may have underestimated the stresses in the implants in flexion-extension and in lateral bending.


Author(s):  
Ming Xu ◽  
Thomas Scholl ◽  
Pedro Berjano ◽  
Jazmin Cruz ◽  
James Yang

Rod fracture and nonunion are common complications associated with pedicle subtraction osteotomies (PSO). Supplementary rods and interbody cage (IB) are added to reduce the primary rod stress. As supplementary rods, delta rods and cross rods have been proposed to reduce more stress on the primary rods compared to conventional supplementary rods (accessary rods) in PSO. The objective of this study is to investigate the effects of cross rods and delta rods on reducing primary rod stress in PSO subject. A validated 3D finite element model of a T12-S1 spine segment with 25° PSO at L3 and bilateral rods fixation from T12-S1 was used to compare different rod configurations: 1) PSO and two primary rods (PSO+2P); 2) PSO with an IB at L2-L3 (PSO+2P+IB); 3) PSO with accessory rods and an IB at L2-L3 (PSO+2P+IB+2A); 4) PSO with delta rods and an IB at L2-L3 (PSO+2P+IB+2D); 5) PSO with single cross rod and an IB at L2-L3 (PSO+2P+IB+1C); 6) PSO with double cross rods and an IB at L2-L3 (PSO+2P+IB+2C). The spine model was loaded with a follower load of 400 N combined with pure moments of 7.5 Nm in flexion, extension, right lateral bending, and right axial rotation. Von Mises stress of the primary rods were predicted for all test conditions. The PSO without IB condition had the largest primary rod stress in flexion. With IB at L2-L3, the rod stress in flexion reduced by 15%. Adding 2 conventional supplementary rods reduced the rod stress in flexion by 29%, which was achieved by adding single cross rod. The maximum von Mises stress occurred in the middle of the primary rods without supplementary rods whereas the maximum stress concentrated adjacent to the contact region between the connectors and the primary rods. Delta rods and double cross rods reduced the most rod stress in flexion, which were by 33% and 32% respectively. Under lateral bending, 2 delta rods reduced the most primary rod stress (−33%). Under axial rotation, the single cross rod reduced the most primary rod stress (−48%). Interbody cages and supplementary rods reduced the primary rod stress in a comparable way. Primary rod stress with 2 delta rods and double cross rods were comparable, which were marginally lower than those with conventional supplementary rods. Adding single cross rod was comparable to adding 2 conventional accessory rods in rod stress reduction in flexion. Under lateral bending, delta rods reduced most rod stress whereas under axial rotation, cross rods reduced most rod stress. This study suggested that both delta rods and cross rods reduce more primary rod stress than conventional accessory rods do.


2019 ◽  
Vol 30 (5) ◽  
pp. 593-601 ◽  
Author(s):  
Rinchen Phuntsok ◽  
Benjamin J. Ellis ◽  
Michael R. Herron ◽  
Chase W. Provost ◽  
Andrew T. Dailey ◽  
...  

OBJECTIVEThere is contradictory evidence regarding the relative contribution of the key stabilizing ligaments of the occipitoatlantal (OA) joint. Cadaveric studies are limited by the nature and the number of injury scenarios that can be tested to identify OA stabilizing ligaments. Finite element (FE) analysis can overcome these limitations and provide valuable data in this area. The authors completed an FE analysis of 5 subject-specific craniocervical junction (CCJ) models to investigate the biomechanics of the OA joint and identify the ligamentous structures essential for stability.METHODSIsolated and combined injury scenarios were simulated under physiological loads for 5 validated CCJ FE models to assess the relative role of key ligamentous structures on OA joint stability. Each model was tested in flexion-extension, axial rotation, and lateral bending in various injury scenarios. Isolated ligamentous injury scenarios consisted of either decreasing the stiffness of the OA capsular ligaments (OACLs) or completely removing the transverse ligament (TL), tectorial membrane (TM), or alar ligaments (ALs). Combination scenarios were also evaluated.RESULTSAn isolated OACL injury resulted in the largest percentage increase in all ranges of motion (ROMs) at the OA joint compared with the other isolated injuries. Flexion, extension, lateral bending, and axial rotation significantly increased by 12.4% ± 7.4%, 11.1% ± 10.3%, 83.6% ± 14.4%, and 81.9% ± 9.4%, respectively (p ≤ 0.05 for all). Among combination injuries, OACL+TM+TL injury resulted in the most consistent significant increases in ROM for both the OA joint and the CCJ during all loading scenarios. OACL+AL injury caused the most significant percentage increase for OA joint axial rotation.CONCLUSIONSThese results demonstrate that the OACLs are the key stabilizing ligamentous structures of the OA joint. Injury of these primary stabilizing ligaments is necessary to cause OA instability. Isolated injuries of TL, TM, or AL are unlikely to result in appreciable instability at the OA joint.


Author(s):  
Lissette M. Ruberté ◽  
Raghu Natarajan ◽  
Gunnar B. J. Andersson

Degenerative disc disease (DDD) is a progressive pathological condition observed in 60 to 80% of the population [1]. It involves changes in both the biochemistry and morphology of the intervertebral disc and is associated with chronic low back pain, sciatica and adult scoliosis [2,3]. The most accepted theory of the effects of DDD on the kinematics of the spine is that proposed by Kirkaldy-Willis and Farfan which states that the condition initiates as a temporary dysfunction, followed by instability and then re-stabilization as the disease progresses [4]. Although there is no clear relationship between disc degeneration and the mechanical behavior of the lumbar spine, abnormal motion patterns either in the form of increased motion or erratic motion have been reported from studies on human cadaveric motion segments [5,6]. To date however no study has looked at how disc degeneration affects the adjacent segment mechanics. IN vivo testing is difficult for these purposes given that specimens are generally obtained from people at the later stages of life and consequently often display multiple pathologies. A finite element model is a viable alternative to study the mechanics of the segments adjacent to the diseased disc. It is hypothesized that moderate degeneration at one level will alter the kinematics of the whole lumbar spine.


2000 ◽  
Author(s):  
Tammy Haut Donahue ◽  
Maury L. Hull ◽  
Mark M. Rashid ◽  
Christopher R. Jacobs

Abstract A finite element model of the tibio-femoral joint in the human knee was created using a new technique for developing accurate solid models of soft tissues (i.e. cartilage and menisci). The model was used to demonstrate that constraining rotational degrees of freedom other than flexion/extension when the joint is loaded in compression markedly affects the load distribution between the medial and lateral sides of the joint. The model also was used to validate the assumption that the bones can be treated as rigid.


Sign in / Sign up

Export Citation Format

Share Document