scholarly journals Granulocyte colony-stimulating factor (G-CSF) mediates bone resorption in periodontitis

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Hui Yu ◽  
Tianyi Zhang ◽  
Haibin Lu ◽  
Qi Ma ◽  
Dong Zhao ◽  
...  

Abstract Background Granulocyte colony-stimulating factor (G-CSF) is an important immune factor that mediates bone metabolism by regulating the functions of osteoclasts and osteoblasts. Bone loss is a serious and progressive result of periodontitis. However, the mechanisms underlying the effects of G-CSF on periodontal inflammation have yet not been completely elucidated. Here, we examined whether an anti-G-CSF antibody could inhibit bone resorption in a model of experimental periodontitis and investigated the local expression of G-CSF in periodontal tissues. Methods Experimental periodontitis was induced in mice using ligatures. The levels of G-CSF in serum and bone marrow were measured; immunofluorescence was then performed to analyze the localization and expression of G-CSF in periodontal tissues. Mice with periodontitis were administered anti-G-CSF antibody by tail vein injection to assess the inhibition of bone resorption. Three-dimensional reconstruction was performed to measure bone destruction‐related parameters via micro-computed tomography analysis. Immunofluorescence staining was used to investigate the presence of osteocalcin-positive osteoblasts; tartrate-resistant acid phosphatase (TRAP) staining was used to observe osteoclast activity in alveolar bone. Results The level of G-CSF in serum was significantly elevated in mice with periodontitis. Immunofluorescence analyses showed that G-CSF was mostly expressed in the cell membrane of gingival epithelial cells; this expression was enhanced in the periodontitis group. Additionally, systemic administration of anti-G-CSF antibody significantly inhibited alveolar bone resorption, as evidenced by improvements in bone volume/total volume, bone surface area/bone volume, trabecular thickness, trabecular spacing, and trabecular pattern factor values. Immunofluorescence analysis revealed an enhanced number of osteocalcin-positive osteoblasts, while TRAP staining revealed reduction of osteoclast activity. Conclusions G-CSF expression levels were significantly up-regulated in the serum and gingival epithelial cells. Together, anti-G-CSF antibody administration could alleviates alveolar bone resorption, suggesting that G-CSF may be one of the essential immune factors that mediate the bone loss in periodontitis.

Blood ◽  
2006 ◽  
Vol 109 (8) ◽  
pp. 3424-3431 ◽  
Author(s):  
Angela C. Hirbe ◽  
Özge Uluçkan ◽  
Elizabeth A. Morgan ◽  
Mark C. Eagleton ◽  
Julie L. Prior ◽  
...  

Abstract Inhibition of osteoclast (OC) activity has been associated with decreased tumor growth in bone in animal models. Increased recognition of factors that promote osteoclastic bone resorption in cancer patients led us to investigate whether increased OC activation could enhance tumor growth in bone. Granulocyte colony-stimulating factor (G-CSF) is used to treat chemotherapy-induced neutropenia, but is also associated with increased markers of OC activity and decreased bone mineral density (BMD). We used G-CSF as a tool to investigate the impact of increased OC activity on tumor growth in 2 murine osteolytic tumor models. An 8-day course of G-CSF alone (without chemotherapy) significantly decreased BMD and increased OC perimeter along bone in mice. Mice administered G-CSF alone demonstrated significantly increased tumor growth in bone as quantitated by in vivo bioluminescence imaging and histologic bone marrow tumor analysis. Short-term administration of AMD3100, a CXCR4 inhibitor that mobilizes neutrophils with little effect on bone resorption, did not lead to increased tumor burden. However, OC-defective osteoprotegerin transgenic (OPGTg) mice and bisphosphonate-treated mice were resistant to the effects of G-CSF administration upon bone tumor growth. These data demonstrate a G-CSF–induced stimulation of tumor growth in bone that is OC dependent.


2008 ◽  
Vol 35 (S 01) ◽  
Author(s):  
T Frank ◽  
K Meuer ◽  
C Pitzer ◽  
J Schulz ◽  
M Bähr ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document