scholarly journals Composition-driven symptom phrase recognition for Chinese medical consultation corpora

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Xuan Gu ◽  
Zhengya Sun ◽  
Wensheng Zhang

Abstract Background Symptom phrase recognition is essential to improve the use of unstructured medical consultation corpora for the development of automated question answering systems. A majority of previous works typically require enough manually annotated training data or as complete a symptom dictionary as possible. However, when applied to real scenarios, they will face a dilemma due to the scarcity of the annotated textual resources and the diversity of the spoken language expressions. Methods In this paper, we propose a composition-driven method to recognize the symptom phrases from Chinese medical consultation corpora without any annotations. The basic idea is to directly learn models that capture the composition, i.e., the arrangement of the symptom components (semantic units of words). We introduce an automatic annotation strategy for the standard symptom phrases which are collected from multiple data sources. In particular, we combine the position information and the interaction scores between symptom components to characterize the symptom phrases. Equipped with such models, we are allowed to robustly extract symptom phrases that are not seen before. Results Without any manual annotations, our method achieves strong positive results on symptom phrase recognition tasks. Experiments also show that our method enjoys great potential with access to plenty of corpora. Conclusions Compositionality offers a feasible solution for extracting information from unstructured free text with scarce labels.

2007 ◽  
Vol 33 (1) ◽  
pp. 105-133 ◽  
Author(s):  
Catalina Hallett ◽  
Donia Scott ◽  
Richard Power

This article describes a method for composing fluent and complex natural language questions, while avoiding the standard pitfalls of free text queries. The method, based on Conceptual Authoring, is targeted at question-answering systems where reliability and transparency are critical, and where users cannot be expected to undergo extensive training in question composition. This scenario is found in most corporate domains, especially in applications that are risk-averse. We present a proof-of-concept system we have developed: a question-answering interface to a large repository of medical histories in the area of cancer. We show that the method allows users to successfully and reliably compose complex queries with minimal training.


Author(s):  
Anshul Kanakia ◽  
Kuansan Wang ◽  
Yuxiao Dong ◽  
Boya Xie ◽  
Kyle Lo ◽  
...  

On the behest of the Office of Science and Technology Policy in the White House, six institutions, including ours, have created an open research dataset called COVID-19 Research Dataset (CORD-19) to facilitate the development of question-answering systems that can assist researchers in finding relevant research on COVID-19. As of May 27, 2020, CORD-19 includes more than 100,000 open access publications from major publishers and PubMed as well as preprint articles deposited into medRxiv, bioRxiv, and arXiv. Recent years, however, have also seen question-answering and other machine learning systems exhibit harmful behaviors to humans due to biases in the training data. It is imperative and only ethical for modern scientists to be vigilant in inspecting and be prepared to mitigate the potential biases when working with any datasets. This article describes a framework to examine biases in scientific document collections like CORD-19 by comparing their properties with those derived from the citation behaviors of the entire scientific community. In total, three expanded sets are created for the analyses: 1) the enclosure set CORD-19E composed of CORD-19 articles and their references and citations, mirroring the methodology used in the renowned “A Century of Physics” analysis; 2) the full closure graph CORD-19C that recursively includes references starting with CORD-19; and 3) the inflection closure CORD-19I, that is, a much smaller subset of CORD-19C but already appropriate for statistical analysis based on the theory of the scale-free nature of the citation network. Taken together, all these expanded datasets show much smoother trends when used to analyze global COVID-19 research. The results suggest that while CORD-19 exhibits a strong tilt toward recent and topically focused articles, the knowledge being explored to attack the pandemic encompasses a much longer time span and is very interdisciplinary. A question-answering system with such expanded scope of knowledge may perform better in understanding the literature and answering related questions. However, while CORD-19 appears to have topical coverage biases compared to the expanded sets, the collaboration patterns, especially in terms of team sizes and geographical distributions, are captured very well already in CORD-19 as the raw statistics and trends agree with those from larger datasets.


2014 ◽  
Vol 46 (1) ◽  
pp. 61-82 ◽  
Author(s):  
Antonio Ferrández ◽  
Alejandro Maté ◽  
Jesús Peral ◽  
Juan Trujillo ◽  
Elisa De Gregorio ◽  
...  

Author(s):  
Chen Zhao ◽  
Chenyan Xiong ◽  
Xin Qian ◽  
Jordan Boyd-Graber

Author(s):  
Réka Hollandi ◽  
Ákos Diósdi ◽  
Gábor Hollandi ◽  
Nikita Moshkov ◽  
Péter Horváth

AbstractAnnotatorJ combines single-cell identification with deep learning and manual annotation. Cellular analysis quality depends on accurate and reliable detection and segmentation of cells so that the subsequent steps of analyses e.g. expression measurements may be carried out precisely and without bias. Deep learning has recently become a popular way of segmenting cells, performing unimaginably better than conventional methods. However, such deep learning applications may be trained on a large amount of annotated data to be able to match the highest expectations. High-quality annotations are unfortunately expensive as they require field experts to create them, and often cannot be shared outside the lab due to medical regulations.We propose AnnotatorJ, an ImageJ plugin for the semi-automatic annotation of cells (or generally, objects of interest) on (not only) microscopy images in 2D that helps find the true contour of individual objects by applying U-Net-based pre-segmentation. The manual labour of hand-annotating cells can be significantly accelerated by using our tool. Thus, it enables users to create such datasets that could potentially increase the accuracy of state-of-the-art solutions, deep learning or otherwise, when used as training data.


Sign in / Sign up

Export Citation Format

Share Document