scholarly journals Meperidine pharmacokinetics and effects on physiologic parameters and thermal threshold following intravenous administration of three doses to horses

2020 ◽  
Vol 16 (1) ◽  
Author(s):  
Briana D. Hamamoto-Hardman ◽  
Eugene P. Steffey ◽  
Daniel S. McKemie ◽  
Philip H. Kass ◽  
Heather K. Knych

Abstract Background Meperidine is a synthetic opioid that belongs to the phenylpiperidine class and is a weak mu receptor agonist. In horses there are a limited number of published studies describing the analgesic effects of systemically administered meperidine in horses. The objective of this study was to describe the pharmacokinetics, behavioral and physiologic effects and effect on thermal threshold of three doses of intravenously administered meperidine to horses. Eight University owned horses (four mares and four geldings, aged 3–8 years were studied using a randomized balanced 4-way cross-over design. Horses received a single intravenous dose of saline, 0.25, 0.5 and 1.0 mg/kg meperidine. Blood was collected before administration and at various time points until 96 hours post administration. Plasma and urine samples were analyzed for meperidine and normeperidine by liquid chromatography-mass spectrometry and plasma pharmacokinetics determined. Behavioral and physiologic data (continuous heart rate, step counts, packed cell volume, total plasma protein and gastrointestinal sounds) were collected at baseline through 6 hours post administration. The effect of meperidine administration on thermal nociception was determined and thermal excursion calculated. Results Meperidine was rapidly converted to the metabolite normeperidine. The volume of distribution at steady state and systemic clearance (mean ± SD) ranged from 0.829 ± 0.138–1.58 ± 0.280 L/kg and 18.0 ± 1.4–22.8 ± 3.60 mL/min/kg, respectively for 0.5–1.0 mg/kg doses. Adverse effects included increased dose-dependent central nervous excitation, heart rate and cutaneous reactions. Significant effects on thermal nociception were short lived (up to 45 minutes at 0.5 mg/kg and 15 minutes at 1.0 mg/kg). Conclusions Results of the current study do not support routine clinical use of IV meperidine at a dose of 1 mg/kg to horses. Administration of 0.5 mg/kg may provide short-term analgesia, however, the associated inconsistent and/or short-term adverse effects suggest that its use as a sole agent at this dose, at best, must be cautiously considered.

The term ‘pollution’ is taken in its broadest sense and effects are recognized to be due to interference, tainting and toxicity. Each of these types of impact is discussed and assessed. It is concluded that no long-term adverse effects on fish stocks can be attributed to oil but that local impacts can be extremely damaging in the short term and that produce from specific localities can be tainted and unmarketable for long periods. In some coastal areas oil can be one among several contributors to reduced water quality, and the implications of this are discussed.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Ioana-Mirela Vasincu ◽  
Maria Apotrosoaei ◽  
Sandra Constantin ◽  
Maria Butnaru ◽  
Liliana Vereștiuc ◽  
...  

Abstract Background Aryl-propionic acid derivatives with ibuprofen as representative drug are very important for therapy, being recommended especially for anti-inflammatory and analgesic effects. On other hand 1,3-thiazolidine-4-one scaffold is an important heterocycle, which is associated with different biological effects such as anti-inflammatory and analgesic, antioxidant, antiviral, antiproliferative, antimicrobial etc. The present study aimed to evaluated the toxicity degree and the anti-inflammatory and analgesic effects of new 1,3-thiazolidine-4-one derivatives of ibuprofen. Methods For evaluation the toxicity degree, cell viability assay using MTT method and acute toxicity assay on rats were applied. The carrageenan-induced paw-edema in rat was used for evaluation of the anti-inflammatory effect while for analgesic effect the tail-flick test, as thermal nociception in rats and the writhing assay, as visceral pain in mice, were used. Results The toxicological screening, in terms of cytotoxicity and toxicity degree on mice, revealed that the ibuprofen derivatives (4a-n) are non-cytotoxic at 2 μg/ml. In addition, ibuprofen derivatives reduced carrageenan-induced paw edema in rats, for most of them the maximum effect was recorded at 4 h after administration which means they have medium action latency, similar to that of ibuprofen. Moreover, for compound 4d the effect was higher than that of ibuprofen, even after 24 h of administration. The analgesic effect evaluation highlighted that 4 h showed increased pain inhibition in reference to ibuprofen in thermal (tail-flick assay) and visceral (writhing assay) nociception models. Conclusions The study revealed for ibuprofen derivatives, noted as 4 m, 4 k, 4e, 4d, a good anti-inflammatory and analgesic effect and also a safer profile compared with ibuprofen. These findings could suggest the promising potential use of them in the treatment of inflammatory pain conditions.


2021 ◽  
pp. 1-10
Author(s):  
Michihiro Osumi ◽  
Daisuke Shimizu ◽  
Yuki Nishi ◽  
Shu Morioka

Background: Patients with brachial plexus avulsion (BPA) usually experience phantom sensations and phantom limb pain (PLP) in the deafferented limb. It has been suggested that evoking the sensation of touch in the deafferented limb by stimulating referred sensation areas (RSAs) on the cheek or shoulder might alleviate PLP. However, feasible rehabilitation techniques using this approach have not been reported. Objective: The present study sought to examine the analgesic effects of simple electrical stimulation of RSAs in BPA patients with PLP. Methods: Study 1: Electrical stimulation of RSAs for 60 minutes was conducted for six BPA patients suffering from PLP to examine short-term analgesic effects. Study 2: A single case design experiment was conducted with two BPA patients to investigate whether electrical stimulation of RSAs was more effective for alleviating PLP than control electrical stimulation (electrical stimulation of sites on side opposite to the RSAs), and to elucidate the long-term effects of electrical stimulation of RSAs. Results: Study 1: Electrical stimulation of RSAs evoked phantom touch sensations in the deafferented limb, and significantly alleviated PLP (p <  0.05). Study 2: PLP was alleviated more after electrical stimulation on RSAs compared with control electrical stimulation (p <  0.05). However, the analgesic effects of electrical stimulation on RSAs were observed only in the short term, not in the long term (p >  0.05). Conclusions: Electrical stimulation of RSAs not only evoked phantom touch sensation but also alleviated PLP in the short term. The results indicate that electrical stimulation of RSAs may provide a useful practical rehabilitation technique for PLP. Future studies will be required to clarify the mechanisms underlying immediate PLP alleviation via electrical stimulation of RSAs.


2000 ◽  
Vol 32 (8) ◽  
pp. 1480-1484 ◽  
Author(s):  
RIKARD HEDELIN ◽  
G??RAN KENTT?? ◽  
URBAN WIKLUND ◽  
PER BJERLE ◽  
KARIN HENRIKSSON-LARS??N

2021 ◽  
Author(s):  
Luis Henrique Ceia Cipriano ◽  
Ytalo Gonçalves Borges ◽  
José Geraldo Mill ◽  
Helder Mauad ◽  
Maria Teresa Martins de Araújo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document